根瘤菌中甲硫氨酸亚砜还原酶底物蛋白的筛选与相互作用验证
作者:
基金项目:

广西自然科学基金(2023GXNSFAA026398);广西高校中青年教师科研基础能力提升项目(2022KY0347);广西大学生创新创业训练计划(S202110594128);广西科技大学博士基金(校科博20Z33)


Screening and verification of substrate proteins of methionine sulfoxide reductase in rhizobia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    根瘤菌在侵染豆科植物过程中会受到活性氧的氧化胁迫,含甲硫氨酸的蛋白质易被氧化成甲硫氨酸亚砜导致蛋白结构和功能改变,甲硫氨酸亚砜还原酶(methionine sulfoxide reductases, Msrs)能将甲硫氨酸亚砜还原成甲硫氨酸,恢复蛋白的结构和功能。前期在华癸中慢生根瘤菌(Mesorhizobium huakuii) 7653R基因组中发现有4个Msrs和抗氧化压力密切相关,但其作用机制仍不清楚。【目的】通过筛选4个Msrs的相互作用底物,为阐明4个Msrs在M. huakuii 7653R中的作用机制提供证据。【方法】按照甲硫氨酸含量由高到低统计M. huakuii 7653R中所有蛋白的分布情况;利用蛋白互作网站预测获得4个Msrs的候选互作底物,将预测互作底物进行功能注释基因本体(gene ontology, GO)分析和京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)代谢通路分析;通过细菌双杂交初步验证它们之间的相互作用。【结果】甲硫氨酸含量百分数分布基本呈正态分布形式,位于中间百分数的蛋白最多,位于两边的蛋白较少;筛选获得有6个抗氧化酶和6个转录调控因子是4个Msrs的候选互作底物;细菌双杂交显示,有2个抗氧化酶和5个转录调控因子确实和4个Msrs存在不同程度的相互作用。【结论】为阐明Msrs在根瘤菌M. huakuii 7653R中抵抗氧化压力的作用机制提供了证据,为揭示根瘤菌抵抗活性氧提供了新的思路和方向。

    Abstract:

    Rhizobia would encounter oxidative stress of reactive oxygen species (ROS) in the process of infecting leguminous plants. Methionine-containing proteins are easy to be oxidized to methionine sulfoxide, leading to changes in protein structure and function. Methionine sulfoxide reductases (Msrs) can reduce methionine sulfoxide to methionine, restoring protein structure and function. We have identified four Msrs in the genome of Mesorhizobium huakuii 7653R that are involved in oxidative stress response, while the mechanism remains unclear. 【Objective】 To identify the substrates of four Msrs and elucidate the roles of the four Msrs in M. huakuii 7653R. 【Methods】 According to the methionine content, we determined the distribution of all the proteins in M. huakuii 7653R. Then, we used the online protein interaction prediction tools to predict the substrates of the four Msrs, and performed gene ontology (GO) functional annotation and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment for the predicted substrates. Finally, we verified the interaction between them by using the bacterial two-hybrid system. 【Results】 The methionine content followed the normal distribution, with most proteins in the middle and few proteins on both sides. Six antioxidant enzymes and six transcription factors were selected as the candidate substrates of the four Msrs. Finally, the bacterial two hybrid results showed that two antioxidant enzymes and five transcription factors can interact with the four Msrs to different degrees. 【Conclusion】 We provided the proof in illustrating the role of Msrs in the oxidative stress response to M. huakuii 7653R and provided a new idea for the research on the mechanism of rhizobia in response to ROS.

    参考文献
    [1] SAEKI K. Rhizobial measures to evade host defense strategies and endogenous threats to persistent symbiotic nitrogen fixation:a focus on two legume-rhizobium model systems[J]. Cellular and Molecular Life Sciences, 2011, 68(8):1327-1339.
    [2] SINGH R, SINGH S, PARIHAR P, MISHRA RK, TRIPATHI DK, SINGH VP, CHAUHAN DK, PRASAD SM. Reactive oxygen species (ROS):beneficial companions of plants' developmental processes[J]. Frontiers in Plant Science, 2016, 7:1299.
    [3] MØLLER IM, SWEETLOVE LJ. ROS signalling- specificity is required[J]. Trends in Plant Science, 2010, 15(7):370-374.
    [4] EZRATY B, AUSSEL L, BARRAS F. Methionine sulfoxide reductases in prokaryotes[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2005, 1703(2):221-229.
    [5] SANTOS R, HEROUART D, PUPPO A, TOUATI D. Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis[J]. Molecular Microbiology, 2000, 38(4):750-759.
    [6] ARDISSONE S, FRENDO P, LAURENTI E, JANTSCHKO W, OBINGER C, PUPPO A, FERRARI RP. Purification and physical-chemical characterization of the three hydroperoxidases from the symbiotic bacterium Sinorhizobium meliloti[J]. Biochemistry, 2004, 43(39):12692-12699.
    [7] DRAZIC A, MIURA H, PESCHEK J, LE Y, BACH NC, KRIEHUBER T, WINTER J. Methionine oxidation activates a transcription factor in response to oxidative stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(23):9493-9498.
    [8] SANTOS R, HÉROUART D, SIGAUD S, TOUATI D, PUPPO A. Oxidative burst in alfalfa-Sinorhizobium meliloti symbiotic interaction[J]. Molecular Plant-Microbe Interactions, 2001, 14(1):86-89.
    [9] ROMSANG A, ATICHARTPONGKUL S, TRINACHARTVANIT W, VATTANAVIBOON P, MONGKOLSUK S. Gene expression and physiological role of Pseudomonas aeruginosa methionine sulfoxide reductases during oxidative stress[J]. Journal of Bacteriology, 2013, 195(15):3299-3308.
    [10] BELOIN C, VALLE J, LATOUR-LAMBERT P, FAURE P, KZREMINSKI M, BALESTRINO D, HAAGENSEN JAJ, MOLIN S, PRENSIER G, ARBEILLE B, GHIGO JM. Global impact of mature biofilm lifestyle on Escherichia coli K-12 gene expression[J]. Molecular Microbiology, 2003, 51(3):659-674.
    [11] KUBONIWA M, TRIBBLE GD, JAMES CE, KILIC AO, TAO L, HERZBERG MC, SHIZUKUISHI S, LAMONT RJ. Streptococcus gordonii utilizes several distinct gene functions to recruit Porphyromonas gingivalis into a mixed community[J]. Molecular Microbiology, 2006, 60(1):121-139.
    [12] HOWELL K. Enhancing research and scholarly experiences based on students' awareness and perception of the research-teaching nexus:a student-centred approach[J]. PLoS One, 2021, 16(9):e0257799.
    [13] HERZBERG MC, NOBBS A, TAO L, KILIC A, BECKMAN E, KHAMMANIVONG A, ZHANG YS. Oral streptococci and cardiovascular disease:searching for the platelet aggregation-associated protein gene and mechanisms of Streptococcus sanguis-induced thrombosis[J]. Journal of Periodontology, 2005, 76(11 Suppl):2101-2105.
    [14] DOUGLAS T, DANIEL DS, PARIDA BK, JAGANNATH C, DHANDAYUTHAPANI S. Methionine sulfoxide reductase A (MsrA) deficiency affects the survival of Mycobacterium smegmatis within macrophages[J]. Journal of Bacteriology, 2004, 186(11):3590-3598.
    [15] GUSTAVSSON N, KOKKE BP, HÄRNDAHL U, SILOW M, BECHTOLD U, POGHOSYAN Z, MURPHY D, BOELENS WC, SUNDBY C. A peptide methionine sulfoxide reductase highly expressed in photosynthetic tissue in Arabidopsis thaliana can protect the chaperone-like activity of a chloroplast-localized small heat shock protein[J]. The Plant Journal, 2002, 29(5):545-553.
    [16] EZRATY B, GRIMAUD R, EL HASSOUNI M, MOINIER D, BARRAS F. Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli[J]. The EMBO Journal, 2004, 23(8):1868-1877.
    [17] TARRAGO L, KIEFFER-JAQUINOD S, LAMANT T, MARCELLIN M, GARIN J, ROUHIER N, REY P. Affinity chromatography:a valuable strategy to isolate substrates of methionine sulfoxide reductases?[J]. Antioxidants & Redox Signaling, 2012, 16(1):79-84.
    [18] KIM JS, PARK HM, CHAE S, LEE TH, HWANG DJ, OH SD, PARK JS, SONG DG, PAN CH, CHOI D, KIM YH, NAHM BH, KIM YK. A pepper MSRB2 gene confers drought tolerance in rice through the protection of chloroplast-targeted genes[J]. PLoS One, 2014, 9(3):e90588.
    [19] CHEN WX, LI GS, QI YL, WANG ET, YUAN HL, LI JL. Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus[J]. International Journal of Systematic Bacteriology, 1991, 41(2):275-280.
    [20] ZHOU DL, LI YN, WANG XT, XIE FL, CHEN DS, MA BG, LI YG. Mesorhizobium huakuii HtpG interaction with nsLTP AsE246 is required for symbiotic nitrogen fixation[J]. Plant Physiology, 2019, 180(1):509-528.
    [21] HARRIS MA, CLARK J, IRELAND A, LOMAX J, ASHBURNER M, FOULGER R, EILBECK K, LEWIS S, MARSHALL B, MUNGALL C, RICHTER J, RUBIN GM, BLAKE JA, BULT C, DOLAN M, DRABKIN H, EPPIG JT, HILL DP, NI L, RINGWALD M, et al. The gene ontology (GO) database and informatics resource[J]. Nucleic Acids Research, 2004, 32(database issue):D258-D261.
    [22] KANEHISA M, GOTO S. KEGG:Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1):27-30.
    [23] JAMET A, KISS E, BATUT J, PUPPO A, HÉROUART D. The katA catalase gene is regulated by OxyR in both free-living and symbiotic Sinorhizobium meliloti[J]. Journal of Bacteriology, 2005, 187(1):376-381.
    [24] LEVINE RL, MOSONI L, BERLETT BS, STADTMAN ER. Methionine residues as endogenous antioxidants in proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(26):15036-15040.
    [25] LEVINE RL, BERLETT BS, MOSKOVITZ J, MOSONI L, STADTMAN ER. Methionine residues may protect proteins from critical oxidative damage[J]. Mechanisms of Ageing and Development, 1999, 107(3):323-332.
    [26] JAMET A, MANDON K, PUPPO A, HÉROUART D. H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis[J]. Journal of Bacteriology, 2007, 189(23):8741-8745.
    [27] HANYU M, FUJIMOTO H, TEJIMA K, SAEKI K. Functional differences of two distinct catalases in Mesorhizobium loti MAFF303099 under free-living and symbiotic conditions[J]. Journal of Bacteriology, 2009, 191(5):1463-1471.
    [28] HENRY C, LOISEAU L, VERGNES A, VERTOMMEN D, MÉRIDA-FLORIANO A, CHITTENI-PATTU S, WOOD EA, CASADESÚS J, COX MM, BARRAS F, EZRATY B. Redox controls RecA protein activity via reversible oxidation of its methionine residues[J]. eLife, 2021, 10:63747.
    [29] TOBES R, RAMOS JL. AraC-XylS database:a family of positive transcriptional regulators in bacteria[J]. Nucleic Acids Research, 2002, 30(1):318-321.
    [30] FROTA CC, PAPAVINASASUNDARAM KG, DAVIS EO, COLSTON MJ. The AraC family transcriptional regulator Rv1931c plays a role in the virulence of Mycobacterium tuberculosis[J]. Infection and Immunity, 2004, 72(9):5483-5486.
    [31] KRUKONIS ES, YU RR, DiRITA VJ. The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade:distinct roles for two membrane-localized transcriptional activators on a single promoter[J]. Molecular Microbiology, 2000, 38(1):67-84.
    [32] ZIEGLER CA, FREDDOLINO PL. The leucine-responsive regulatory proteins/feast-famine regulatory proteins:an ancient and complex class of transcriptional regulators in bacteria and archaea[J]. Critical Reviews in Biochemistry and Molecular Biology, 2021:1-28.
    [33] TANG GR, WANG Y, LUO L. Transcriptional regulator LsrB of Sinorhizobium meliloti positively regulates the expression of genes involved in lipopolysaccharide biosynthesis[J]. Applied and Environmental Microbiology, 2014, 80(17):5265-5273.
    [34] LU DW, TANG GR, WANG D, LUO L. The Sinorhizobium meliloti LysR family transcriptional factor LsrB is involved in regulation of glutathione biosynthesis[J]. Acta Biochimica et Biophysica Sinica, 2013, 45(10):882-888.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韦曼丽,姚演兰,闭寒思,郭荣兴,何宝源,李岚,易弋,黄翠姬,佀再勇. 根瘤菌中甲硫氨酸亚砜还原酶底物蛋白的筛选与相互作用验证[J]. 微生物学报, 2024, 64(3): 780-794

复制
分享
文章指标
  • 点击次数:256
  • 下载次数: 593
  • HTML阅读次数: 396
  • 引用次数: 0
历史
  • 收稿日期:2023-08-05
  • 最后修改日期:2023-09-15
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码