氧化葡萄糖酸杆菌通过降低pH值损害斑翅果蝇及益生菌
作者:
基金项目:

国家自然科学基金(31501175);安徽农业大学高层次人才引进项目(rc342201);安徽省自然科学基金(2308085MC74)


Pathogenicity of Gluconobacter oxydans toward Drosophila suzukii and probiotics by reducing pH
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [35]
  • |
  • 相似文献 [4]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】分离斑翅果蝇病原性细菌并解析其致病机理,以期应用于生物防治斑翅果蝇。【方法】利用平板划线的方法,从已发生褐变的斑翅果蝇培养物中分离引起褐变的细菌,并通过16S rRNA基因序列进行鉴定;使用酸化乙醇法测定褐变物质,检测细菌的褐变能力;在致病性检测实验中,利用菌液饲喂法检测病原菌对果蝇存活率的影响,使用二氢乙锭(dihydroethidium, DHE)染色法检测肠道活性氧(reactive oxygen species, ROS)活性,用亮蓝染色检测肠道通透性。【结果】从斑翅果蝇培养物中分离出褐变性细菌氧化葡萄糖酸杆菌(Gluconobacter oxydans)。该菌株显著地降低斑翅果蝇存活率,第8天时存活率下降到49.41% (P<0.001);同时,该菌株显著地降低斑翅果蝇对缺水和饥饿等胁迫耐受性(P<0.001),分别在第24小时和第32小时存活率降到58%和50.9%。G. oxydans感染损伤果蝇肠道通透性并显著地增高ROS水平(P<0.001)。G. oxydans强烈地降低斑翅果蝇培养基pH值(pH 2.0),进而降低果蝇存活率、抑制和灭杀益生菌植物乳杆菌(Lactobacillus plantarum)。【结论】G. oxydans通过强烈降低培养基pH而降低斑翅果蝇存活率,同时可抑制益生菌生长,表明该菌具有较好的防治斑翅果蝇等害虫的潜能。

    Abstract:

    【Objective】 To isolate the pathogenic bacteria of Drosophila suzukii and study the mechanism of bacterial pathogenicity towards the host. 【Methods】 The pathogenic bacteria were isolated by the plate streaking method and identified based on the 16S rRNA gene sequences. The acidified ethanol method was employed to measure the ability of the isolate to cause browning. The pathogenicity of the isolate was examined by oral infection. Dihydroethidium (DHE) was used to determine the level of reactive oxygen species (ROS), and brilliant blue staining was used to examine the intestinal permeability. 【Results】 A strain was isolated from the brown culture medium of D. suzukii and identified as Gluconobacter oxydans. The strain reduced the survival rate of D. suzukii to 49.41% on day 8 (P<0.001). Furthermore, it weakened the tolerance of D. suzukii to desiccation and starvation, reducing the survival rate to 58% and 50.9% at the time points of 24 h and 32 h, respectively (P<0.001). Moreover, the flies treated with G. oxydans displayed impaired integrity of the intestine and had higher level of ROS in the guts than the control group (P<0.001). G. oxydans robustly reduced the medium pH (pH 2.0), which compromised the survival rate of D. suzukii and the growth of Lactobacillus plantarum, a probiotic of D. suzukii. 【Conclusion】 G. oxydans was a potent pathogen capable of reducing the survival rate of D. suzukii by lowering the medium pH and inhibiting the growth of probiotics, demonstrating the potential of serving the biocontrol of D. suzukii.

    参考文献
    [1] GRASSI A, GOTTARDELLO A, DALTON DT, TAIT G, RENDON D, IORIATTI C, GIBEAUT D, ROSSI STACCONI MV, WALTON VM. Seasonal reproductive biology of Drosophila suzukii (Diptera:Drosophilidae) in temperate climates[J]. Environmental Entomology, 2018, 47(1):166-174.
    [2] ATALLAH J, TEIXEIRA L, SALAZAR R, ZARAGOZA G, KOPP A. The making of a pest:the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species[J]. Proceedings Biological Sciences, 2014, 281(1781):20132840.
    [3] DiGIACOMO G, HADRICH J, HUTCHISON WD, PETERSON H, ROGERS M. Economic impact of spotted wing Drosophila (Diptera:Drosophilidae) yield loss on Minnesota raspberry farms:a grower survey[J]. Journal of Integrated Pest Management, 2019, 10(1):11.
    [4] SHAW B, HEMER S, CANNON MFL, ROGAI F, FOUNTAIN MT. Insecticide control of Drosophila suzukii in commercial sweet cherry crops under cladding[J]. Insects, 2019, 10(7):196.
    [5] ROSSI STACCONI MV, BUFFINGTON M, DAANE KM, DALTON DT, GRASSI A, KAÇAR G, MILLER B, MILLER JC, BASER N, IORIATTI C, WALTON VM, WIMAN NG, WANG XG, ANFORA G. Host stage preference, efficacy and fecundity of parasitoids attacking Drosophila suzukii in newly invaded areas[J]. Biological Control, 2015, 84:28-35.
    [6] WANG XG, SERRATO MA, SON Y, WALTON VM, HOGG BN, DAANE KM. Thermal performance of two indigenous pupal parasitoids attacking the invasive Drosophila suzukii (Diptera:Drosophilidae)[J]. Environmental Entomology, 2018, 47(3):764-772.
    [7] SIFFERT A, CAHENZLI F, KEHRLI P, DANIEL C, DEKUMBIS V, EGGER B, FURTWENGLER J, MINGUELY C, STÄHELI N, WIDMER F, MAZZI D, COLLATZ J. Predation on Drosophila suzukii within hedges in the agricultural landscape[J]. Insects, 2021, 12(4):305.
    [8] CUTHBERTSON AGS, COLLINS DA, BLACKBURN LF, AUDSLEY N, BELL HA. Preliminary screening of potential control products against Drosophila suzukii[J]. Insects, 2014, 5(2):488-498.
    [9] CUTHBERTSON A, AUDSLEY N. Further screening of entomopathogenic fungi and nematodes as control agents for Drosophila suzukii[J]. Insects, 2016, 7(2):24.
    [10] LEE KZ, VILCINSKAS A. Analysis of virus susceptibility in the invasive insect pest Drosophila suzukii[J]. Journal of Invertebrate Pathology, 2017, 148:138-141.
    [11] 任春燕, 刘杰, 罗明华, 聂忠扬, 黄宁, 赵海燕, 唐良德. 天敌昆虫-蠋蝽的研究进展[J]. 中国农学通报, 2022, 38(12):100-109. REN CY, LIU J, LUO MH, NIE ZY, HUANG N, ZHAO HY, TANG LD. A review on Arma chinensis Fallout (Hemiptera:Pentatomidae):a natural enemy insect[J]. Chinese Agricultural Science Bulletin, 2022, 38(12):100-109(in Chinese).
    [12] HIEBERT N, CARRAU T, BARTLING M, VILCINSKAS A, LEE KZ. Identification of entomopathogenic bacteria associated with the invasive pest Drosophila suzukii in infested areas of Germany[J]. Journal of Invertebrate Pathology, 2020, 173:107389.
    [13] BEDINI S, MUNIZ ER, TANI C, CONTI B, RUIU L. Insecticidal potential of Brevibacillus laterosporus against dipteran pest species in a wide ecological range[J]. Journal of Invertebrate Pathology, 2020, 177:107493.
    [14] MASTORE M, CARAMELLA S, QUADRONI S, BRIVIO MF. Drosophila suzukii susceptibility to the oral administration of Bacillus thuringiensis, Xenorhabdus nematophila and its secondary metabolites[J]. Insects, 2021, 12(7):635.
    [15] JIA YC, JIN S, HU KK, GENG L, HAN CH, KANG RX, PANG YX, LING EJ, TAN EK, PAN YF, LIU W. Gut microbiome modulates Drosophila aggression through octopamine signaling[J]. Nature Communications, 2021, 12(1):2698.
    [16] KIEFLER I, BRINGER S, BOTT M. Metabolic engineering of Gluconobacter oxydans 621H for increased biomass yield[J]. Applied Microbiology and Biotechnology, 2017, 101(13):5453-5467.
    [17] 冯婧宇, 王生雷, 刘威, 周思艺, 郭心睿, 芦韬, 徐本锦, 陈利荣, 魏建宏. 果蝇共生菌降低有害真菌的毒性[J]. 微生物学通报, 2021, 48(8):2723-2732. FENG JY, WANG SL, LIU W, ZHOU SY, GUO XR, LU T, XU BJ, CHEN LR, WEI JH. Drosophila symbionts attenuate the pathogenicity of fungi[J]. Microbiology China, 2021, 48(8):2723-2732(in Chinese).
    [18] LI G, SHAN XY, ZENG WZ, YU SQ, ZHANG GQ, CHEN J, ZHOU JW. Efficient production of 2,5-diketo-D-gluconic acid by reducing browning levels during Gluconobacter oxydans ATCC 9937 fermentation[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10:918277.
    [19] BING XL, WINKLER J, GERLACH J, LOEB G, BUCHON N. Identification of natural pathogens from wild Drosophila suzukii[J]. Pest Management Science, 2021, 77(4):1594-1606.
    [20] LI YX, BAI P, WEI LS, KANG RX, CHEN LR, ZHANG ML, TAN EK, LIU W. Capsaicin functions as Drosophila ovipositional repellent and causes intestinal dysplasia[J]. Scientific Reports, 2020, 10(1):9963.
    [21] R.E. 布坎南, N.E. 吉本斯. 伯杰细菌鉴定手册[M]. 中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译. 第8版. 北京:科学出版社, 1984:325-328. R.E. BUCHANAN, N.E. GIBBEANS. Bergey's Manual of Bacteria Identification[M]. The Institute of Microbiology, Chinese Academy of Sciences Translation Team of Bergey's Manual of Bacteria Identification. 8th Edition. Beijing:Science Press, 1984:325-328(in Chinese).
    [22] DEPPENMEIER U, HOFFMEISTER M, PRUST C. Biochemistry and biotechnological applications of Gluconobacter strains[J]. Applied Microbiology and Biotechnology, 2002, 60(3):233-242.
    [23] YANG SP, LI X, XIU MH, DAI YT, WAN SF, SHI Y, LIU YQ, HE JZ. Flos puerariae ameliorates the intestinal inflammation of Drosophila via modulating the Nrf2/Keap1, JAK-STAT and Wnt signaling[J]. Frontiers in Pharmacology, 2022, 13:893758.
    [24] GIBBS KE, MACKEY RL, CURRIE DJ. Human land use, agriculture, pesticides and losses of imperiled species[J]. Diversity and Distributions, 2009, 15(2):242-253.
    [25] GUPTA A, SINGH VK, QAZI GN, KUMAR A. Gluconobacter oxydans:its biotechnological applications[J]. Journal of Molecular Microbiology and Biotechnology, 2001, 3(3):445-456.
    [26] da SILVA GAR, de SOUSA OLIVEIRA SS, LIMA SF, do NASCIMENTO RP, de SOUZA BAPTISTA AR, FIAUX SB. The industrial versatility of Gluconobacter oxydans:current applications and future perspectives[J]. World Journal of Microbiology and Biotechnology, 2022, 38(8):134.
    [27] OVEREND G, LUO Y, HENDERSON L, DOUGLAS AE, DAVIES SA, DOW JAT. Molecular mechanism and functional significance of acid generation in the Drosophila midgut[J]. Scientific Reports, 2016, 6:27242.
    [28] ARIAS-ROJAS A, IATSENKO I. The role of microbiota in Drosophila melanogaster aging[J]. Frontiers in Aging, 2022, 3:909509.
    [29] BEALES N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress:a review[J]. Comprehensive Reviews in Food Science and Food Safety, 2004, 3(1):1-20.
    [30] SHEN CY, LU CH, WU CH, LI KJ, KUO YM, HSIEH SC, YU CL. The development of Maillard reaction, and advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling inhibitors as novel therapeutic strategies for patients with AGE-related diseases[J]. Molecules, 2020, 25(23):5591.
    [31] WONG ACN, CHASTON JM, DOUGLAS AE. The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis[J]. The International Society for Microbial Ecology Journal, 2013, 7(10):1922-1932.
    [32] HA EM, LEE KA, PARK SH, KIM SH, NAM HJ, LEE HY, KANG DM, LEE WJ. Regulation of DUOX by the Gαq-phospholipase Cβ-Ca2+ pathway in Drosophila gut immunity[J]. Developmental Cell, 2009, 16(3):386-397.
    [33] LEE KA, KIM SH, KIM EK, HA EM, YOU H, KIM B, KIM MJ, KWON Y, RYU JH, LEE WJ. Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila[J]. Cell, 2013, 153(4):797-811.
    [34] SU WZ, LIU JL, BAI P, MA BC, LIU W. Pathogenic fungi-induced susceptibility is mitigated by mutual Lactobacillus plantarum in the Drosophila melanogaster model[J]. BioMed Central microbiology, 2019, 19(1):302.
    [35] 李玉娟, 苏琬真, 朱旭峰, 惠新琳, 樊晓光, 姚红, 常新剑, 刘威. 一株东方醋酸杆菌分离与其促进果蝇生长发育[J]. 微生物学报, 2017, 57(10):1536-1545. LI YJ, SU WZ, ZHU XF, HUI XL, FAN XG, YAO H, CHANG XJ, LIU W. Isolation of Acetobacter orientalis and their promotion of the growth and development of Drosophila melanogaster[J]. Acta Microbiologica Sinica, 2017, 57(10):1536-1545(in Chinese).
    引证文献
引用本文

杨维康,张晟,王子光,何娜娜,周传明,周少杰,刘安琪,纪晓雯,刘威. 氧化葡萄糖酸杆菌通过降低pH值损害斑翅果蝇及益生菌[J]. 微生物学报, 2024, 64(3): 795-808

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-07
  • 最后修改日期:2023-10-26
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码