贵州阿哈湖水库沉积物中甲烷氧化菌分布与功能
作者:
基金项目:

国家自然科学基金(42267064);贵州省科技计划(黔科中引地[2022] 4022);贵州省教育厅高等学校科技创新团队(黔教技[2023] 056)


Distribution and functions of methanotrophs in the sediments of Aha Lake Reservoir,Guizhou Province
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    甲烷氧化菌是一类能够以甲烷作为唯一碳源和能量维持生存的微生物,其活动与生态系统中物质循环及能量流动密切相关。【目的】了解阿哈湖水库沉积物中甲烷氧化菌群落结构及代谢功能。【方法】采用宏基因组技术对环湖沉积物和湖心沉积物进行研究。【结果】水库沉积物中主要的好氧甲烷氧化菌是甲基杆菌属(Methylobacter) (0.37%)和甲基单胞菌属(Methylomonas) (0.12%),主要的厌氧甲烷氧化菌是Candidatus_Methylomirabilis (0.12%),属于NC10门细菌中的亚硝酸盐反硝化型厌氧甲烷氧化菌,其中好氧甲烷氧化菌的pmoA基因为6.16×107 copies/g,反硝化型厌氧甲烷氧化菌的16S rRNA基因为2.84×107 copies/g。4种代谢的功能基因多样性表现为氮代谢>碳代谢>硫代谢>甲烷代谢,基于京都基因和基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)基因库进行注释得到6大类功能,发现18条与碳(包括甲烷)、氮、硫代谢有关的完整代谢途径。主坐标分析(principal coordinates analysis, PCoA)显示环湖沉积物与湖心沉积物之间的甲烷氧化菌种类和功能存在显著差异。影响甲烷氧化菌分布的主要环境因子为氧化还原电位、电导率和硫酸根。【结论】阿哈湖水库甲烷氧化菌以Ⅰ型好氧甲烷氧化菌为主,甲烷氧化菌群落代谢途径丰富,Ⅰ型和Ⅱ型甲烷氧化菌在对O2的适应性上有显著差异。相关研究可为湖泊水生态环境的保护和微生物资源的开发利用等方面提供一定的理论支撑。

    Abstract:

    Methanotrophs can utilize methane as the only carbon source and energy, and they can survive and participate in material circulation and energy flow in ecosystems. 【Objective】 To unveil the structure and functions of methanotrophs community in the sediments from the Aha Lake Reservoir (referred to as the Reservoir), a typical karst lake reservoir in Guiyang City, Guizhou Province. 【Methods】 We used metagenomics to analyze the sediments collected from the edge and the center of the Reservoir. 【Results】 The dominant aerobic methanotrophs were Methylobacter (0.37%) and Methylomonas (0.12%), and the dominant anaerobic methanotrophs were Candidatus_Methylomirabilis (0.12%), being NC10 denitrifying anaerobic methanotrophs. The gene pmoA encoding particulate methane monooxygenase of aerobic methanotrophs had the relative abundance of 6.16×107 copies/g and the 16S rRNA gene had the relative abundance of 2.84×107 copies/g in denitrifying anaerobic methanotrophs. The diversity of four metabolic functional genes followed a trend of nitrogen metabolism>carbon metabolism>sulfur metabolism>methane metabolism. Kyoto encyclopedia of genes and genomes (KEGG) annotation revealed six functions and 18 complete pathways involving carbon (including methane), nitrogen, and sulfur metabolism. The results of principal coordinate analysis (PCoA) showed huge discrepancies in the distribution and functions of methanotrophs between sediments from the edge and the center of the Reservoir. Moreover, redox potential, conductivity, and sulfate were primary environmental factors affecting methanotroph distribution. 【Conclusion】 Type I aerobic methanotrophs dominated the Reservoir with abundant metabolic pathways. Types I and II methanotrophs exhibited huge discrepancies in terms of their adaptability to O2. All these fundings are expected to provide theoretical support for lake water environment conservation and microbial utilizationation.

    参考文献
    [1] ZHANG WZ, SHENG R, ZHANG MM, XIONG GY, HOU HJ, LI SL, WEI WX. Effects of continuous manure application on methanogenic and methanotrophic communities and methane production potentials in rice paddy soil[J]. Agriculture, Ecosystems & Environment, 2018, 258:121-128.
    [2] ZHENG YL, HOU LJ, CHEN FY, ZHOU J, LIU M, YIN GY, GAO J, HAN P. Denitrifying anaerobic methane oxidation in intertidal marsh soils:occurrence and environmental significance[J]. Geoderma, 2020, 357:113943.
    [3] CALABRESE S, GARCIA A, WILMOTH JL, ZHANG XN, PORPORATO A. Critical inundation level for methane emissions from wetlands[J]. Environmental Research Letters, 2021, 16(4):044038.
    [4] BRINDHA RK, VASUDEVAN N. Methane oxidation capacity of methanotrophs isolated from different soil ecosystems[J]. International Journal of Environmental Science and Technology, 2018, 15(9):1931-1940.
    [5] SILJANEN HMP, SAARI A, BODROSSY L, MARTIKAINEN PJ. Effects of nitrogen load on the function and diversity of methanotrophs in the littoral wetland of a boreal lake[J]. Frontiers in Microbiology, 2012, 3:39.
    [6] 蔡朝阳, 何崭飞, 胡宝兰. 甲烷氧化菌分类及代谢途径研究进展[J]. 浙江大学学报(农业与生命科学版), 2016, 42(3):273-281. CAI CY, HE ZF, HU BL. Progresses in the classification and mechanism of methane-oxidizing bacteria[J]. Journal of Zhejiang University (Agriculture & Life Sciences Edition), 2016, 42(3):273-281(in Chinese).
    [7] MARTIN G, RISSANEN AJ, GARCIA SL, MEHRSHAD M, BUCK M, PEURA S. Candidatus Methylumidiphilus drives peaks in methanotrophic relative abundance in stratified lakes and ponds across northern landscapes[J]. Frontiers in Microbiology, 2021, 12:669937.
    [8] MAYR MJ, ZIMMERMANN M, DEY J, WEHRLI B, BÜRGMANN H. Lake mixing regime selects apparent methane oxidation kinetics of the methanotroph assemblage[J]. Biogeosciences, 2020, 17(16):4247-4259.
    [9] GENTZEL T. Net sediment production of methane, distribution of methanogens and methane-oxidizing bacteria, and utilization of methane-derived carbon in an Arctic Lake[J]. Inland Waters, 2012, 2(2):77-88.
    [10] KHMELENINA VN, SHCHUKIN VN, RESHETNIKOV AS, MUSTAKHIMOV II, SUZINA NE, TS ESHINIMAEV B, TROTSENKO YA. Structural and functional features of methanotrophs from hypersaline and alkaline lakes[J]. Microbiology, 2010, 79(4):472-482.
    [11] THOMAS C, FROSSARD V, PERGA ME, TOFIELD-PASCHE N, HOFMANN H, DUBOIS N, BELKINA N, ZOBKOVA M, ROBERT S, LYAUTEY E. Lateral variations and vertical structure of the microbial methane cycle in the sediment of Lake Onego (Russia)[J]. Inland Waters, 2019, 9(2):205-226.
    [12] ZHANG SH, YAN L, CAO JH, WANG KX, LUO Y, HU HY, WANG LX, YU RH, PAN BZ, YU K, ZHAO J, BAO ZH. Salinity significantly affects methane oxidation and methanotrophic community in Inner Mongolia Lake sediments[J]. Frontiers in Microbiology, 2023, 13:1067017.
    [13] DENG YC, LIU YQ, DUMONT M, CONRAD R. Salinity affects the composition of the aerobic methanotroph community in alkaline lake sediments from the Tibetan Plateau[J]. Microbial Ecology, 2017, 73(1):101-110.
    [14] 彭兴意, 秦宇, 舒钰清, 李银波, 张曦. 三峡库区夏季万州段底泥甲烷功能菌群落对甲烷排放的影响[J]. 环境工程学报, 2022, 16(3):1028-1038. PENG XY, QIN Y, SHU YQ, LI YB, ZHANG X. Effects of functional methane community in sediments of Wanzhou section of the Three Gorges Reservoir on methane emissions in summer[J]. Chinese Journal of Environmental Engineering, 2022, 16(3):1028-1038(in Chinese).
    [15] LIU DP, YANG YN, AI J, LI YC, XING Y, LI J. Research on microbial structures, functions and metabolic pathways in an advanced denitrification system coupled with aerobic methane oxidation based on metagenomics[J]. Bioresource Technology, 2021, 332:125047.
    [16] 费志军, 王柱红, 唐杨. 阿哈湖水体丰枯水期重金属含量特征与来源解析[J]. 地球与环境, 2021, 49(1):42-50. FEI ZJ, WANG ZH, TANG Y. Characteristics and source analysis of heavy metals in water of aha lake during the rain and dry seasons[J]. Earth and Environment, 2021, 49(1):42-50(in Chinese).
    [17] 贺蓓, 李瑞利, 柴民伟, 邱国玉, 沈小雪. 深圳湾红树林沉积物-植物体系汞的分布规律和形态分配特征[J]. 生态环境学报, 2015, 24(3):469-475. HE B, LI RL, CHAI MW, QIU GY, SHEN XX. Distribution and speciation of mercury (Hg) in Futian mangrove wetland, Shenzhen Bay[J]. Ecology and Environment Sciences, 2015, 24(3):469-475(in Chinese).
    [18] 中华人民共和国生态环境部. 土壤质量全氮的测定凯式法:HJ 717-2014[S]. 北京:中国环境科学出版社, 2015. Ministry of Ecology and Environment of the People's Republic of China. Soil quality-determination of total nitrogen-modified Kjeldahl method:HJ 717-2014[S]. Beijing:China Environment Science Press, 2015(in Chinese).
    [19] 中华人民共和国生态环境部. 土壤总磷的测定碱熔-钼锑抗分光光度法:HJ 632-2011[S]. 北京:中国环境科学出版, 2012. Ministry of Ecology and Environment of the People's Republic of China. Soil-determination of total phosphorus by alkali fusion-Mo-Sb anti spectrophotometric method:HJ 632-2011[S]. Beijing:China Environment Science Press, 2012(in Chinese).
    [20] 鲍士旦. 土壤农化分析[M]. 第3版. 北京:中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:Chinese Agriculture Press, 2000(in Chinese).
    [21] 杨叶琴, 赵昌平, 赵杰. 离子色谱法测定土壤中的3种阴离子[J]. 理化检验-化学分册, 2018, 54(3):293-296. YANG YQ, ZHAO CP, ZHAO J. Determination of 3 anions in soil by ion chromatography[J]. Physical Testing and Chemical Analysis Part B (Chemical Analysis), 2018, 54(3):293-296(in Chinese).
    [22] COSTELLO AM, LIDSTROM ME. Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments[J]. Applied and Environmental Microbiology, 1999, 65(11):5066-5074.
    [23] ETTWIG KF, van ALEN T, van de PAS-SCHOONEN KT, JETTEN MSM, STROUS M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied and Environmental Microbiology, 2009, 75(11):3656-3662.
    [24] LI DH, LIU CM, LUO RB, SADAKANE K, LAM TW. MEGAHIT:an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10):1674-1676.
    [25] NOGUCHI H, PARK J, TAKAGI T. MetaGene:prokaryotic gene finding from environmental genome shotgun sequences[J]. Nucleic Acids Research, 2006, 34(19):5623-5630.
    [26] BUCHFINK B, XIE C, HUSON DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1):59-60.
    [27] BUCHFINK B, REUTER K, DROST HG. Sensitive protein alignments at tree-of-life scale using DIAMOND[J]. Nature Methods, 2021, 18(4):366-368.
    [28] KANEHISA M, FURUMICHI M, SATO Y, KAWASHIMA M, ISHIGURO-WATANABE M. KEGG for taxonomy-based analysis of pathways and genomes[J]. Nucleic Acids Research, 2023, 51(D1):D587-D592.
    [29] 刘晓丹, 黄毅, 王永花, 汪贝贝, 吴兵, 陆光华. 西藏尼洋河沉积物中微生物群落结构特征分析[J]. 环境科学, 2020, 41(7):3249-3256. LIU XD, HUANG Y, WANG YH, WANG BB, WU B, LU GH. Structural characteristics of microbial communities in the sediments of the niyang river in Tibet[J]. Environmental Science, 2020, 41(7):3249-3256(in Chinese).
    [30] 贠娟莉, 王艳芬, 张洪勋. 好氧甲烷氧化菌生态学研究进展[J]. 生态学报, 2013, 33(21):6774-6785. YUN JL, WANG YF, ZHANG HX. Ecology of aerobic methane oxidizing bacteria (methanotrophs)[J]. Acta Ecologica Sinica, 2013, 33(21):6774-6785(in Chinese).
    [31] 严程, 梅娟, 赵由才. 好氧甲烷氧化菌及其工程应用进展[J]. 生物工程学报, 2022, 38(4):1322-1338. YAN C, MEI J, ZHAO YC. Engineering application of aerobic methane oxidizing bacteria (methanotrophs):a review[J]. Chinese Journal of Biotechnology, 2022, 38(4):1322-1338(in Chinese).
    [32] SUNDH I, BASTVIKEN D, TRANVIK LJ. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes[J]. Applied and Environmental Microbiology, 2005, 71(11):6746-6752.
    [33] LYAUTEY E, BILLARD E, TISSOT N, JACQUET S, DOMAIZON I. Seasonal dynamics of abundance, structure, and diversity of methanogens and methanotrophs in lake sediments[J]. Microbial Ecology, 2021, 82(3):559-571.
    [34] RISSANEN AJ, SAARENHEIMO J, TIIROLA M, PEURA S, AALTO SL, KARVINEN A, NYKÄNEN H. Gammaproteobacterial methanotrophs dominate methanotrophy in aerobic and anaerobic layers of boreal lake waters[J]. Aquatic Microbial Ecology, 2018, 81(3):257-276.
    [35] CREVECOEUR S, VINCENT WF, COMTE J, MATVEEV A, LOVEJOY C. Diversity and potential activity of methanotrophs in high methane-emitting permafrost thaw ponds[J]. PLoS One, 2017, 12(11):e0188223.
    [36] DEUTZMANN JS, WÖRNER S, SCHINK B. Activity and diversity of methanotrophic bacteria at methane seeps in eastern Lake Constance sediments[J]. Applied and Environmental Microbiology, 2011, 77(8):2573-2581.
    [37] YANG YY, CHEN JF, TONG TL, LI BQ, HE T, LIU Y, XIE SG. Eutrophication influences methanotrophic activity, abundance and community structure in freshwater lakes[J]. Science of the Total Environment, 2019, 662:863-872.
    [38] SILJANEN HMP, SAARI A, BODROSSY L, MARTIKAINEN PJ. Seasonal variation in the function and diversity of methanotrophs in the littoral wetland of a boreal eutrophic眠楬瑡桫?敛湊癝椮爠潆湅浍敓渠瑍慩汣?杯敢湩潯浬楯捧獹嬠?嵣??卯捧楹攬渠挲攰?′水????″??????????????????㈠??扌牅?孋??嵁????娠??匠??么????婁?啅?夠????乁?????偁?乏?堬???湚桉慎湁挠敎摅?愠湎慁敍牓潁扒楁捙?潖砠楂摂愬琠楔潒湏?潓晅?测敏琠桙慁渮攠?睥楲瑯桢?瑣栠敭?捴潨敡确楯獴瑲敯湰捨敳?潦晲?業爠潴湨?漠硣楯摡敳獴?慬渠摴?獥畲汭晡慬琠敳?晲敩牮瑧楳氠楯穦攠牌?楫湥?灂慡摩摫祡?獛潊楝氮嬠?嵩???桢敩浯潬獯灧桹攬爠攲?‰代?㈠????㈩??????代???扢牲?孛??嵝??佳唬??儸????乑????????偑???囍????堲嗷????圽?亄??剹妁??呝栮攠?涃旑捦栔慶測椠猲洰?漵昬?猲甸氨昱愱琩攺?漶渷‰愭?渶椷琶爮愠瑗敁?摇攠湊椬琠牓楏晎祇椠湙杈?愠湐慅敎片漠扊楆挬?浙敕瑁桎愠湌敊?漠硓楰摡慴瑩楡潬渭?獥祭獰瑯敲浡孬?嵤???湲癩楢牵潴湩浯敮渠瑡慮汤?卣捯業敭湵据敩?坹愠瑳整牲?剣整獵敲慥爠捡桮???味敩捳栠湯潦氠潮杩祴???づ㈠?????????㈠????????? methane-oxidizing bacteria in the sediments of the Hun river[J]. Research of Environmental Sciences, 2015, 28(11):1670-1676(in Chinese).
    [41] GRAF JS, MAYR MJ, MARCHANT HK, TIENKEN D, HACH PF, BRAND A, SCHUBERT CJ, KUYPERS MMM, MILUCKA J. Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake[J]. Environmental Microbiology, 2018, 20(7):2598-2614.
    [42] KNOWLES R. Denitrifiers associated with methanotrophs and their potential impact on the nitrogen cycle[J]. Ecological Engineering, 2005, 24(5):441-446.
    [43] RAHALKAR MC, PANDIT P. Genome-based insights into a putative novel Methylomonas species (strain Kb3), isolated from an Indian rice field[J]. Gene Reports, 2018, 13:9-13.
    [44] JING HM, WANG RN, JIANG QY, ZHANG Y, PENG XT. Anaerobic methane oxidation coupled to denitrification is an important potential methane sink in deep-sea cold seeps[J]. Science of the Total Environment, 2020, 748:142459.
    [45] 阎磊. 内蒙古湖泊湿地沉积物甲烷氧化菌群落多样性及环境驱动因素研究[D]. 呼和浩特:内蒙古大学硕士学位论文, 2022. YAN L. Study on community diversity and environmental driving factors of methane oxidizing bacteria in lake wetland sediments in Inner Mongolia[D]. Hohhot:Master's Thesis of Inner Mongolia University, 2022(in Chinese).
    [46] 黄培. 三峡库区消落带湿地反硝化型厌氧甲烷氧化菌的存在与分布特征[D]. 武汉:武汉纺织大学硕士学位论文, 2015. HUANG P. Occurrence and distribution of nitrate/nitrite-dependent anaerobic methane oxidation (n-damo) in water-level fluctuation zone of the Three Gorges Reservoir[D]. Wuhan:Master's Thesis of Wuhan Textile University, 2015(in Chinese).
    [47] EGMATOV S, SAVVICHEV AS, KADNIKOV VV, BELETSKY AV, RUSANOV II, KLYUVITKIN AA, NOVICHKOVA EA, MARDANOV AV, PIMENOV NV, RAVIN NV. Microbial communities involved in methane, sulfur, and nitrogen cycling in the sediments of the Barents Sea[J]. Microorganisms, 2021, 9(11):2362.
    [48] BOETIUS A, RAVENSCHLAG K, SCHUBERT CJ, RICKERT D, WIDDEL F, GIESEKE A, AMANN R, JØRGENSEN BB, WITTE U, PFANNKUCHE O. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804):623-626.
    [49] CHISTOSERDOVA L, KALYUZHNAYA MG, LIDSTROM ME. The expanding world of methylotrophic metabolism[J]. Annual Review of Microbiology, 2009, 63:477-499.
    [50] YANG YY, CHEN JF, JENNIFER P, XIE SG. DNA-SIP reveals an overlooked methanotroph, Crenothrix sp., involved in methane consumption in shallow lake sediments[J]. Science of the Total Environment, 2022, 814:152742.
    [51] KHADEM AF, POL A, JETTEN MSM, OP den CAMP HJM. Nitrogen fixation by the verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' SolV[J]. Microbiology, 2010, 156(4):1052-1059.
    [52] MOHAMMADI SS, POL A, van ALEN T, JETTEN MSM, OP den CAMP HJM. Ammonia oxidation and nitrite reduction in the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV[J]. Frontiers in Microbiology, 2017, 8:1901.
    [53] MARTINEZ-CRUZ K, SEPULVEDA-JAUREGUI A, WALTER ANTHONY K, THALASSO F. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan Lakes[J]. Biogeosciences, 2015, 12(15):4595-4606.
    [54] ROLAND FAE, DARCHAMBEAU F, MORANA C, BOUILLON S, BORGES AV. Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium)[J]. Chemosphere, 2017, 168:756-764.
    [55] 夏品华, 林陶. 云贵高原典型湖滨湿地好氧甲烷氧化细菌群落结构和数量的时空动态[J]. 生态学报, 2021, 41(12):4776-4785. XIA PH, LIN T. Spatio-temporal variayion in the abundance and structure of aerobic methane-oxidizing bacteria in the littoral wetland, Yunnan-Guizhou Plateau lake[J]. Acta Ecologica Sinica, 2021, 41(12):4776-4785(in Chinese).
    [56] BORREL G, JÉZÉQUEL D, BIDERRE-PETIT C, MOREL-DESROSIERS N, MOREL JP, PEYRET P, FONTY G, LEHOURS AC. Production and consumption of methane in freshwater lake ecosystems[J]. Research in Microbiology, 2011, 162(9):832-847.
    [57] CHOWDHURY TR, DICK R. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands[J]. Applied Soil Ecology, 2013, 65:8-22.
    [58] ZHANG T, ZHU W, MO J, LIU L, DONG S. Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH4 uptake in an old-growth tropical forest, southern China[J]. Biogeosciences, 2011, 8(9):2805-2813.
    [59] GAO DD, SHENG R, WHITELEY AS, MOREIRA-GREZ B, QIN HL, ZHANG WZ, ZHAN Y, WEI WX. Effect of phosphorus amendments on rice rhizospheric methanogens and methanotrophs in a phosphorus deficient soil[J]. Geoderma, 2020, 368:114312.
    [60] SHUKLA PN, PANDEY KD, MISHRA VK. Environmental determinants of soil methane oxidation and methanotrophs[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(18):1945-2011.
    [61] SCHUBERT CJ, VAZQUEZ F, LÖSEKANN- BEHRENS T, KNITTEL K, TONOLLA M, BOETIUS A. Evidence for anaerobic oxidation of methane in sediments of a freshwater system (Lago di Cadagno)[J]. FEMS Microbiology Ecology, 2011, 76(1):26-38.
    [62] BLAZEWICZ SJ, PETERSEN DG, WALDROP MP, FIRESTONE MK. Anaerobic oxidation of methane in tropical and boreal soils:ecological significance in terrestrial methane cycling[J]. Journal of Geophysical Research:Biogeosciences, 2012, 117(G2):1-9.
    [63] SMEMO KA, YAVITT JB. Anaerobic oxidation of methane:an underappreciated aspect of methane cycling in peatland ecosystems?[J]. Biogeosciences, 2011, 8(3):779-793.
    [64] LI HZ, YANG QH, ZHOU HY. Niche differentiation of sulfate- and iron-dependent anaerobic methane oxidation and methylotrophic methanogenesis in deep sea methane seeps[J]. Frontiers in Microbiology, 2020, 11:1409.
    [65] HALLAM SJ, PUTNAM N, PRESTON CM, DETTER JC, ROKHSAR D, RICHARDSON PM, DeLONG EF. Reverse methanogenesis:testing the hypothesis
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵若男,艾佳,李彦澄,王乐乐,李江. 贵州阿哈湖水库沉积物中甲烷氧化菌分布与功能[J]. 微生物学报, 2024, 64(3): 809-825

复制
分享
文章指标
  • 点击次数:258
  • 下载次数: 580
  • HTML阅读次数: 500
  • 引用次数: 0
历史
  • 收稿日期:2023-08-17
  • 最后修改日期:2023-12-11
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码