一株霍氏肠杆菌对四环素的降解作用及其降解产物的毒性评估
作者:
基金项目:

中央地方科技发展指导基金(2023JH6/100100056);沈阳市科技计划(22-317-2-08);现代农业产业技术体系建设专项资金(CARS-01-51)


Biodegradation of tetracycline by an Enterobacter hormaechei strain and toxicity of degradation products
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【目的】抗生素作为新兴污染物,已经引起社会的极大关注。针对四环素有效降解菌株缺乏这一现状,本研究旨在筛选和鉴定具有降解四环素功能的菌株,分析其降解特性和降解作用类型、初步探讨其降解活性物质定位并评估其降解产物的生理毒性。【方法】以四环素为唯一碳源,从受四环素污染的猪场污泥中筛选四环素降解菌株;结合菌落形态学特征、生理生化特征、扫描电镜观察和16S rRNA基因测序鉴定菌株,通过不同外源碳、pH及去除动力学阐明菌株对四环素的降解特性,提取菌株不同成分探讨其去除四环素的作用类型,并进一步从细胞内液和细胞外液开展生物降解的活性物质定位,最后评估降解产物的生理毒性。【结果】筛选鉴定得到一株霍氏肠杆菌(Enterobacter hormaechei) MEH2305,pH为7.0和添加10 g/L外源碳胰蛋白胨是其发挥降解作用的最适条件。MEH2305通过非生物降解和生物降解的共同作用,在培养第7天对四环素总去除率达到68% (对土霉素和盐酸强力霉素去除率分别为53%和56%),其分泌的细胞内液和细胞外液对四环素的去除率分别为40.77%和31.18%。同时,与未经MEH2305处理的四环素对照组比较,MEH2305降解四环素的产物对革兰氏阴性大肠杆菌(Escherichia coli) K88和革兰氏阳性枯草芽孢杆菌(Bacillus subtilis) 168的生理毒性作用显著降低。【结论】MEH2305可以作为一株潜在的有效且安全的四环素降解菌株,应用于抗生素的环境治理领域。

    Abstract:

    【Objective】 Antibiotics as emerging pollutants have aroused wide concern. In view of the shortage of effective tetracycline-degrading strains, this study aims to screen and identify the strains for tetracycline degradation, analyze degradation properties and type, pinpoint the localization of active substances for bio-degradation, and evaluate the physiological toxicity of degradation products. 【Methods】 Tetracycline was used as the sole carbon source to screen out the target strain from tetracycline-contaminated pig sludge. The strain was identified based on colony morphology, physiological and biochemical characteristics, scanning electron microscopy images, and the 16S rRNA gene sequence. Different carbon sources, pH, and removal kinetics were employed to characterize the degradation process of the strain. Different components of the strain were extracted to determine the degradation type of tetracycline by the strain. Furthermore, the intracellular and extracellular fluids of the strain were used to degrade tetracycline, so as to determine the location of the active substance for degradation. Finally, the toxicity of the degradation products was assessed. 【Results】 The strain MEH2305 was screened out and identified as Enterobacter hormaechei, which showed the best degradation performance at pH 7.0 and with tryptone as the carbon source. Strain MEH2305 showed a total tetracycline removal rate of 68% on the 7th day of culture via abiotic degradation and bio-degradation, and the removal rates of oxytetracycline and doxycycline hydrochloride were 53% and 56%, respectively. The tetracycline removal efficiency by the intracellular and extracellular fluids of MEH2305 was 40.77% and 31.18%, respectively. Compared with tetracycline control without MEH2305, the tetracycline degradation products of MEH2305 had reduced physiological toxicity on Gram-negative Escherichia coli K88 and Gram-positive Bacillus subtilis 168. 【Conclusion】 The strain MEH2305 can be used as an effective and safe tetracycline-degrading strain for the treatment of antibiotics in the environment.

    参考文献
    [1] CHOPRA I, ROBERTS M. Tetracycline antibiotics:mode of action, applications, molecular biology, and epidemiology of bacterial resistance[J]. Microbiology and Molecular Biology Reviews, 2001, 65(2):232-260.
    [2] CHEN XL, YANG YY, KE YC, CHEN C, XIE SG. A comprehensive review on biodegradation of tetracyclines:current research progress and prospect[J]. Science of the Total Environment, 2022, 814:152852.
    [3] HU Y, CHENG HF. Health risk from veterinary antimicrobial use in China's food animal production and its reduction[J]. Environmental Pollution, 2016, 219:993-997.
    [4] MAHAMALLIK P, SAHA S, PAL A. Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly[J]. Chemical Engineering Journal, 2015, 276:155-165.
    [5] CHANG BV, REN YL. Biodegradation of three tetracyclines in river sediment[J]. Ecological Engineering, 2015, 75:272-277.
    [6] NOLWENN P, JUAN O, ABDELTIF A. Biodegradation and biosorption of tetracycline and tylosin antibiotics in activated sludge system[J]. Process Biochemistry, 2009, 44(11):1302-1306.
    [7] MIRJAM P, RACHEL C, UTE H, JOHANNES H, CELINE P, GUENOLA P, MICHIEL R. Soil biodiversity, biological indicators and soil ecosystem services-an overview of European approaches[J]. Current Opinion in Environmental Sustainability, 2012, 4(5):529-538.
    [8] SILVA VP, MOREIRA-SANTOS M, MATEUS C, TEIXEIRA T, RIBEIRO R, VIEGAS CA. Evaluation of Arthrobacter aurescens strain TC1 as bioaugmentation bacterium in soils contaminated with the herbicidal substance terbuthylazine[J]. PLoS One, 2015, 10(12):e0144978.
    [9] JULIANA S, CLAUDIA SB, MARÍA JA. Lindane removal by pure and mixed cultures of immobilized actinobacteria[J]. Chemosphere, 2012, 89(8):982-987.
    [10] TAN ZW, CHEN JC, LIU YL, CHEN L, XU YQ, ZOU YX, LI YT, GONG BN. The survival and removal mechanism of Sphingobacterium changzhouense TC931 under tetracycline stress and its' ecological safety after application[J]. Bioresource Technology, 2021, 333:125067.
    [11] LI Z, SUN YQ, YANG Y, HAN YT, WANG TS, CHEN JW, TSANG DCW. Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics:mechanisms and pathway[J]. Environmental Research, 2020, 183:109156.
    [12] NAIF ABDULLAH A, GALAL ALI E, MARIADHAS VALAN A. Effective degradation of tetracycline by manganese peroxidase producing Bacillus velezensis strain Al-Dhabi 140 from Saudi Arabia using fibrous-bed reactor[J]. Chemosphere, 2021, 268:128726.
    [13] YIN ZF, XIA D, SHEN M, ZHU DW, CAI HJ, WU M, ZHU QR, KANG YJ. Tetracycline degradation by Klebsiella sp. strain TR5:proposed degradation pathway and possible genes involved[J]. Chemosphere, 2020, 253:126729.
    [14] YANG MY, YIN MY, ZHENG YQ, JIANG JS, WANG CX, LIU S, YAN LL. Performance and mechanism of tetracycline removal by the aerobic nitrate-reducing strain Pseudomonas sp. XS-18 with auto-aggregation[J]. Bioresource Technology, 2022, 359:127442.
    [15] BHATT P, JEON CH, KIM W. Tetracycline bioremediation using the novel Serratia marcescens strain WW1 isolated from a wastewater treatment plant[J]. Chemosphere, 2022, 298:134344.
    [16] CHEN XL, SHEN W, CHEN JF, ZHU Y, CHEN C, XIE SG. Tetracycline biotransformation by a novel bacterial strain Alcaligenes sp. T17[J]. Science of the Total Environment, 2022, 832:115130.
    [17] TAN H, KONG DL, LI QQ, ZHOU YQ, JIANG X, WANG ZY, PARALES RE, RUAN ZY. Metabolomics reveals the mechanism of tetracycline biodegradation by a Sphingobacterium mizutaii S121[J]. Environmental Pollution, 2022, 305:119299.
    [18] SHI YK, LIN H, MA JW, ZHU RR, SUN WC, LIN XY, ZHANG J, ZHENG HB, ZHANG X. Degradation of tetracycline antibiotics by Arthrobacter nicotianae OTC-16[J]. Journal of Hazardous Materials, 2021, 403:123996.
    [19] ZHANG SN, WANG JH. Biodegradation of chlortetracycline by Bacillus cereus LZ01:performance, degradative pathway and possible genes involved[J]. Journal of Hazardous Materials, 2022, 434:128941.
    [20] SHAO SC, HU YY, CHENG JH, CHEN YC. Biodegradation mechanism of tetracycline (TEC) by strain Klebsiella sp. SQY5 as revealed through products analysis and genomics[J]. Ecotoxicology and Environmental Safety, 2019, 185:109676.
    [21] SHAO SC, HU YY, CHENG C, CHENG JH, CHEN YC. Simultaneous degradation of tetracycline and denitrification by a novel bacterium, Klebsiella sp. SQY5[J]. Chemosphere, 2018, 209:35-43.
    [22] BUCHANAN RE, GIBBONS NE. Bergey's Manual of Determinative Bacteriology[M]. Institute of Microbiology, Chinese Academy of Sciences, trans. 8 th ed. Beijing:Science Press, 1984.
    [23] SONAM T, SANGEETA Y, DIANE P, KAMAN S, HIND A, RAM C. Characterization of persistent organic pollutants and culturable and non-culturable bacterial communities in pulp and paper sludge after secondary treatment[J]. Chemosphere, 2022, 295:133892.
    [24] SATHYA PM, MOHAN H, VENKATACHALAM J, SERALATHAN K. A hybrid technique for sulfamethoxazole (SFM) removal using Enterobacter hormaechei HaG-7:bio-electrokinetic degradation, pathway and toxicity[J]. Chemosphere, 2023, 313:137485.
    [25] SUN S, SU YH, CHEN SQ, CUI W, ZHAO CC, LIU QY. Bioremediation of oil-contaminated soil:exploring the potential of endogenous hydrocarbon degrader Enterobacter sp. SAVR S-1[J]. Applied Soil Ecology, 2022, 173:104387.
    [26] EDOAMODU CE, NWODO UU. Enterobacter sp. AI1 produced a thermo-acidic-tolerant laccase with a high potential for textile dyes degradation[J]. Biocatalysis and Agricultural Biotechnology, 2021, 38:102206.
    [27] PENG XX, ZHENG QH, LIU L, HE YZ, LI TY, JIA XS. Efficient biodegradation of tetrabromobisphenol A by the novel strain Enterobacter sp. T2 with good environmental adaptation:kinetics, pathways and genomic characteristics[J]. Journal of Hazardous Materials, 2022, 429:128335.
    [28] WANG Y, WAN SG, YU WL, YUAN D, SUN L. Newly isolated Enterobacter cloacae sp. HN01 and Klebsiella pneumoniae sp. HN02 collaborate with self-secreted biosurfactant to improve solubility and bioavailability for the biodegradation of hydrophobic and toxic gaseous para-xylene[J]. Chemosphere, 2022, 304:135328.
    [29] ZHANG JY, ZHAO RX, CAO LJ, LEI YS, LIU J, FENG J, FU WJ, LI XY, LI B. High-efficiency biodegradation of chloramphenicol by enriched bacterial consortia:kinetics study and bacterial community characterization[J]. Journal of Hazardous Materials, 2020, 384:121344.
    [30] LI YC, ZHOU J, GONG BZ, WANG YM, HE Q. Cometabolic degradation of lincomycin in a sequencing batch biofilm reactor (SBBR) and its microbial community[J]. Bioresource Technology, 2016, 214:589-595.
    [31] LUO W, ZHAO YH, DING HT, LIN XY, ZHENG HB. Co-metabolic degradation of bensulfuron-methyl in laboratory conditions[J]. Journal of Hazardous Materials, 2008, 158(1):208-214.
    [32] PAN LJ, LI J, LI CX, TANG XD, YU GW, WANG Y. Study of ciprofloxacin biodegradation by a Thermus sp. isolated from pharmaceutical sludge[J]. Journal of Hazardous Materials, 2018, 343:59-67.
    [33] TAN ZW, YANG XY, LIU YL, CHEN L, XU HJ, LI YT, GONG BN. The capability of chloramphenicol biotransformation of Klebsiella sp. YB1 under cadmium stress and its genome analysis[J]. Chemosphere, 2023, 313:137375.
    [34] JOHNSEN AR, WICK LY, HARMS H. Principles of microbial PAH-degradation in soil[J]. Environmental Pollution, 2005, 133(1):71-84.
    [35] FISCHER K, MAJEWSKY M. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms[J]. Applied Microbiology and Biotechnology, 2014, 98(15):6583-6597.
    [36] PINHAL S, ROPERS D, GEISELMANN J, de JONG H. Acetate metabolism and the inhibition of bacterial growth by acetate[J]. Journal of Bacteriology, 2019, 201(13):e00147-e00119.
    [37] 张小红, 王亚娟, 陶红, 张锐, 马志义. 一株同时降解4种四环素类抗生素降解菌的筛选及降解特性[J]. 环境化学, 2022, 41(8):2761-2770. ZHANG XH, WANG YJ, TAO H, ZHANG R, MA ZY. Screened and degradation characteristics of a four tetracycline antibiotics degrading bacterium[J]. Environmental Chemistry, 2022, 41(8):2761-2770(in Chinese).
    [38] HE W, MEGHARAJ M, WU CY, SUBASHCHANDRABOSE SR, DAI CC. Endophyte-assisted phytoremediation:mechanisms and current application strategies for soil mixed pollutants[J]. Critical Reviews in Biotechnology, 2020, 40(1):31-45.
    [39] HALLING-SØRENSEN B, LYKKEBERG A, INGERSLEV F, BLACKWELL P, TJØRNELUND J. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS[J]. Chemosphere, 2003, 50(10):1331-1342.
    [40] WANG SZ, WANG JL. Biodegradation and metabolic pathway of sulfamethoxazole by a novel strain Acinetobacter sp.[J]. Applied Microbiology and Biotechnology, 2018, 102(1):425-432.
    [41] LENG YF, BAO JG, CHANG GF, ZHENG H, LI XX, DU JK, SNOW D, LI X. Biotransformation of tetracycline by a novel bacterial strain Stenotrophomonas maltophilia DT1[J]. Journal of Hazardous Materials, 2016, 318:125-133.
    [42] ZHANG HQ, JIA YY, KHANAL SK, LU H, FANG HT, ZHAO Q. Understanding the role of extracellular polymeric substances on ciprofloxacin adsorption in aerobic sludge, anaerobic sludge, and sulfate-reducing bacteria sludge systems[J]. Environmental Science & Technology, 2018, 52(11):6476-6486.
    [43] XU J, SHENG GP. Microbial extracellular polymeric substances (EPS) acted as a potential reservoir in responding to high concentrations of sulfonamides shocks during biological wastewater treatment[J]. Bioresource Technology, 2020, 313:123654.
    [44] XU DM, XIOA YP, PAN H, MEI Y. Toxic effects of tetracycline and its degradation products on freshwater green algae[J]. Ecotoxicology and Environmental Safety, 2019, 174:43-47.
    [45] DU YQ, CHENG QL, QIAN MG, LIU YZ, WANG F, MA JW, ZHANG X, LIN H. Biodegradation of sulfametoxydiazine by Alcaligenes aquatillis FA:performance, degradation pathways, and mechanisms[J]. Journal of Hazardous Materials, 2023, 452:131186.
    [46] 曹欢, 黄泽昊, 苏彩萍, 任宇红. 四环素类抗生素降解菌的筛选及降解特性探究[J]. 环境科学与技术, 2022, 45(12):19-28. CAO H, HUANG ZH, SU CP, REN YH. Screening and degradation characteristics of tetracyclines degrading bacteria[J]. Environmental Science & Technology, 2022, 45(12):19-28(in Chinese).
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王思宇,葛紫怡,陈义轩,朱晓琳,刘赛男,孟军. 一株霍氏肠杆菌对四环素的降解作用及其降解产物的毒性评估[J]. 微生物学报, 2024, 64(3): 826-839

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-08-26
  • 最后修改日期:2023-11-09
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码