Neorhizobium petrolearium OS53联合紫花苜蓿协同修复石油污染土壤研究
作者:
基金项目:

陕西省教育厅专项科研计划(21JK0992);延安大学2022年校级大学生创新创业训练计划(D2022013);国家自然科学基金(42207037);延安市科技专项经费(2019-27,203010105)


Neorhizobium petrolearium OS53 combined with alfalfa (Medicago sativa L.) for remediation of petroleum-contaminated soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】探究Neorhizobium petrolearium OS53与紫花苜蓿协同修复石油污染土壤的机制。【方法】使用Illumina和Nanopore平台对菌株OS53进行全基因组测序,构建菌株基因组完成图,并进行基因预测及功能注释,分析其中与结瘤促生及石油降解相关基因,并通过实验测定菌株OS53产吲哚乙酸(indole acetic acid, IAA)、铁载体、溶磷和解钾等与促生相关的能力。使用试剂盒对联合修复前后土壤中土壤脲酶、脱氢酶、多酚氧化酶和脂肪酶活性及紫花苜蓿的叶绿素、丙二醛、脯氨酸、可溶性蛋白、可溶性糖和超氧化物歧化酶等生理指标进行测定。【结果】菌株OS53的基因组由一个5.56 Mb的环形染色体和2个大小分别为0.92 Mb和0.38 Mb的质粒组成,基因组G+C含量为60.2%,共编码6 968个基因。菌株OS53与N. petrolearium DSM 26482T的16S rRNA基因序列相似性最高,为99.86%,且在系统发育树上形成稳定分支,表明菌株OS53与N. petrolearium为同一种,因此将OS53命名为N. petrolearium OS53。试验结果表明,菌株OS53具有产IAA能力,并在其基因组中也发现相关基因。在初始石油含量为(4 403.30±222.10) mg/kg时,经过120 d修复,OS53与紫花苜蓿协同修复效率能够达到57.53%,比不接种OS53、仅接种OS53和仅种植苜蓿分别提高了44.26%、41.69%和8.84%。在联合修复体系中,紫花苜蓿叶绿素、可溶性蛋白和可溶性糖的含量有所提高,丙二醛和脯氨酸的含量以及超氧化物歧化酶的活性有所降低,同时土壤中多酚氧化酶、脱氢酶、脂肪酶和脲酶的活性都有所提高。【结论】菌株OS53具有产IAA的能力,并且能够促进紫花苜蓿在石油污染土壤中的生长,进而提高土壤中与石油降解相关部分酶活,最终提高联合修复体系对石油污染土壤的修复效果。

    Abstract:

    【Objective】 To explore the mechanism of Neorhizobium petrolearium OS53 combined with alfalfa (Medicago sativa L.) in the remediation of petroleum-contaminated soil. 【Methods】 Illumina and Nanopore were employed to sequence the whole genome of N. petrolearium OS53, and the complete genome map of the strain was constructed. Gene prediction and functional annotation were carried out to analyze the genes involved in nodulation and oil degradation. The abilities of strain OS53 to produce indole acetic acid (IAA), secrete siderophore, and solubilize phosphorus and potassium were tested. The activities of urease, dehydrogenase, polyphenol oxidase, and lipase in soil and the levels of chlorophyll, malondialdehyde, proline, soluble protein, soluble sugar, and superoxide dismutase in alfalfa were measured by kits. 【Results】 The genome of strain OS53 consisted of a circular chromosome of 5.56 Mb and two plasmids of 0.92 Mb and 0.38 Mb, respectively, with the G+C content of 60.2%. The genome encoded a total of 6 968 genes. The strain OS53 and N. petrolearium DSM 26482T showed the 16S rRNA gene sequence similarity of 99.86%, and formed stable branches on the phylogenetic tree, indicating that strain OS53 and N. petrolearium were the same species. Therefore, OS53 was named as N. petrolearium OS53. The strain OS53 had the ability to produce IAA, and the related genes were identified in the genome. After 120 days of remediation of the soil with the initial oil content of (4 403.30±222.10) mg/kg, OS53 and alfalfa showed the remediation efficiency up to 57.53%, which was 44.26%, 41.69%, and 8.84% higher than that of no inoculation of strain OS53, inoculation of OS53 only, and planting alfalfa only, respectively. In the combined remediation system, alfalfa showed elevated the levels of chlorophyll, soluble protein, and soluble sugar and lowered levels of malondialdehyde, proline, and superoxide dismutase, and the soil showed increased activities of polyphenol oxidase, dehydrogenase, lipase, and urease. 【Conclusion】 The strain OS53 had the ability to produce IAA to promote the growth of alfalfa in the petroleum-contaminated soil, which increased the activity of enzymes involved in oil degradation in the soil. Finally, the combined system improved the remediation efficiency of the soil.

    参考文献
    [1] BOLAN N, SARKAR B, YAN YB, LI Q, WIJESEKARA H, KANNAN K, TSANG DCW, SCHAUERTE M, BOSCH J, NOLL H, OK YS, SCHECKEL K, KUMPIENE J, GOBINDLAL K, KAH M, SPERRY J, KIRKHAM MB, WANG HL, TSANG YF, HOU DY, et al. Remediation of poly- and perfluoroalkyl substances (PFAS) contaminated soils-to mobilize or to immobilize or to degrade?[J]. Journal of Hazardous Materials, 2021, 401:123892.
    [2] YUAN LM, WU YQ, FAN QH, LI P, LIANG JJ, LIU YH, MA R, LI RJ, SHI LP. Remediating petroleum hydrocarbons in highly saline-alkali soils using three native plant species[J]. Journal of Environmental Management, 2023, 339:117928.
    [3] HAGHOLLAHI A, FAZAELIPOOR MH, SCHAFFIE M. The effect of soil type on the bioremediation of petroleum contaminated soils[J]. Journal of Environmental Management, 2016, 180:197-201.
    [4] IQBAL A, MUKHERJEE M, RASHID J, KHAN SA, ALI MA, ARSHAD M. Development of plant-microbe phytoremediation system for petroleum hydrocarbon degradation:an insight from alkb gene expression and phytotoxicity analysis[J]. Science of the Total Environment, 2019, 671:696-704.
    [5] HOU JU, WANG QL, LIU WX, ZHONG DX, GE YY, CHRISTIE P, LUO YM. Soil microbial community and association network shift induced by several tall fescue cultivars during the phytoremediation of a petroleum hydrocarbon-contaminated soil[J]. Science of the Total Environment, 2021, 792:148411.
    [6] LIN QX, MENDELSSOHN IA. Impacts and recovery of the Deepwater horizon oil spill on vegetation structure and function of coastal salt marshes in the northern gulf of Mexico[J]. Environmental Science & Technology, 2012, 46(7):3737-3743.
    [7] WANG K, HUANG HG, ZHU ZQ, LI TQ, HE ZL, YANG XE, ALVA A. Phytoextraction of metals and rhizoremediation of PAHs in co-contaminated soil by co-planting of Sedum alfredii with ryegrass (Lolium perenne) or castor (Ricinus communis)[J]. International Journal of Phytoremediation, 2013, 15(3):283-298.
    [8] XIE WJ, ZHANG YP, LI R, YANG HJ, WU T, ZHAO LP, LU ZH. The responses of two native plant species to soil petroleum contamination in the Yellow River Delta, China[J]. Environmental Science and Pollution Research, 2017, 24(31):24438-24446.
    [9] SARWAR N, IMRAN M, SHAHEEN MR, ISHAQUE W, KAMRAN MA, MATLOOB A, REHIM A, HUSSAIN S. Phytoremediation strategies for soils contaminated with heavy metals:modifications and future perspectives[J]. Chemosphere, 2017, 171:710-721.
    [10] KIAMARSI Z, KAFI M, SOLEIMANI M, NEZAMI A, LUTTS S. Conjunction of Vetiveria zizanioides L. and oil-degrading bacteria as a promising technique for remediation of crude oil-contaminated soils[J]. Journal of Cleaner Production, 2020, 253:119719.
    [11] LIU Z, LI Z, CHEN SG, ZHOU WZ. Enhanced phytoremediation of petroleum-contaminated soil by biochar and urea[J]. Journal of Hazardous Materials, 2023, 453:131404.
    [12] 付严松, 李宇聪, 徐志辉, 邵佳慧, 刘云鹏, 宣伟, 张瑞福. 根际促生菌调控植物根系发育的信号与分子机制研究进展[J]. 生物技术通报, 2020, 36(9):42-48. FU YS, LI YC, XU ZH, SHAO JH, LIU YP, XUAN W, ZHANG RF. Research progressing in signals and molecular mechanisms of plant growth-promoting rhizobacteria to regulate plant root development[J]. Biotechnology Bulletin, 2020, 36(9):42-48(in Chinese).
    [13] ETESAMI H. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants?[J]. Agriculture, Ecosystems & Environment, 2018, 253:98-112.
    [14] PÉREZ-MONTAÑO F, ALÍAS-VILLEGAS C, BELLOGÍN RA, del CERRO P, ESPUNY MR, JIMÉNEZ-GUERRERO I, LÓPEZ-BAENA FJ, OLLERO FJ, CUBO T. Plant growth promotion in cereal and leguminous agricultural important plants:from microorganism capacities to crop production[J]. Microbiological Research, 2014, 169(5/6):325-336.
    [15] POURBABAEE AA, KHAZAEI M, ALIKHANI HA, EMAMI S. Root nodulation of alfalfa by Ensifer meliloti in petroleum contaminated soil[J]. Rhizosphere, 2021, 17:100305.
    [16] 陈科言. 野大豆-根瘤菌共生固氮体系联合石油降解菌修复石油污染土壤的研究[D]. 曲阜:曲阜师范大学硕士学位论文, 2022. CHEN KY. Study on remediation of petroleum contaminated soil by wild soybean-rhizobia symbiotic nitrogen fixation system combined with petroleum degrading bacteria[D]. Qufu:Master's Thesis of Qufu Normal University, 2022(in Chinese).
    [17] 毛正君, 耿咪咪. 紫花苜蓿根系抗拉力学特性及其影响因素研究[J]. 干旱区研究, 2023, 40(2):235-246. MAO ZJ, GENG MM. Study on tensile mechanical properties of alfalfa roots and the influencing factors[J]. Arid Zone Research, 2023, 40(2):235-246(in Chinese).
    [18] MEHMANNAVAZ R, PRASHER SO, AHMAD D. Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti[J]. Process Biochemistry, 2002, 37(9):955-963.
    [19] ZHANG XX, LI BM, WANG HS, SUI XH, MA XT, HONG Q, JIANG RB. Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt_8):1871-1876.
    [20] WICK RR, JUDD LM, GORRIE CL, HOLT KE. Unicycler:resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Computational Biology, 2017, 13(6):e1005595.
    [21] MANNI M, BERKELEY MR, SEPPEY M, SIMÃO FA, ZDOBNOV EM. BUSCO update:novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes[J]. Molecular Biology and Evolution, 2021, 38(10):4647-4654.
    [22] HA SM, KIM CK, ROH J, BYUN JH, YANG SJ, CHOI SB, CHUN J, YONG D. Application of the whole genome-based bacterial identification system, TrueBac ID, using clinical isolates that were not identified with three matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems[J]. Annals of Laboratory Medicine, 2019, 39(6):530-536.
    [23] KUMAR S, STECHER G, TAMURA K. MEGA 7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7):1870-1874.
    [24] 晋婷婷, 曹永清, 李云玲, 白凤麟, 白变霞, 任嘉红, 孟静, 李琳, 王莹. 一株连香树根际促生细菌LWK2的分离鉴定及其全基因组序列分析[J]. 微生物学通报, 2023, 50(5):1917-1940. JIN TT, CAO YQ, LI YL, BAI FL, BAI BX, REN JH, MENG J, LI L, WANG Y. Isolation, identification, and whole-genome sequence analysis of a plant growth-promoting bacterium LWK2 from Cercidiphyllum japonicum rhizosphere[J]. Microbiology China, 2023, 50(5):1917-1940(in Chinese).
    [25] 辽宁省鞍山生态环境监测中心. 土壤石油类的测定红外分光光度法[Z]. 生态环境部生态环境监测司, 生态环境部生态环境法规与标准司. 2019:10. Anshan Ecological Environment Monitoring Center, Liaoning Province. Determination of petroleum in soil by infrared spectrophotometry[Z]. Department of Ecological Environment Monitoring, Department of Ecological Environment Regulations and Standards, Ministry of Ecological Environment. 2019:10(in Chinese).
    [26] SOENENS A, GOMILA M, IMPERIAL J. Neorhizobium tomejilense sp. nov., first non-symbiotic Neorhizobium species isolated from a dryland agricultural soil in southern Spain[J]. Systematic and Applied Microbiology, 2019, 42(2):128-134.
    [27] 侯卫国, 连宾. 慢生根瘤菌属结瘤基因的进化及遗传分析[J]. 遗传, 2007, 29(1):118-126. HOU WG, LIAN B. Phylogenetic and genetic analysis of symbiotic nodulation genes within the Bradyrhizobium[J]. Hereditas, 2007, 29(1):118-126(in Chinese).
    [28] GIRAUD E, MOULIN L, VALLENET D, BARBE V, CYTRYN E, AVARRE JC, JAUBERT M, SIMON D, CARTIEAUX F, PRIN Y, BENA G, HANNIBAL L, FARDOUX J, KOJADINOVIC M, VUILLET L, LAJUS A, CRUVEILLER S, ROUY Z, MANGENOT S, SEGURENS B, et al. Legumes symbioses:absence of Nod genes in photosynthetic bradyrhizobia[J]. Science, 2007, 316(5829):1307-1312.
    [29] OKAZAKI S, TITTABUTR P, TEULET A, THOUIN J, FARDOUX J, CHAINTREUIL C, GULLY D, ARRIGHI JF, FURUTA N, MIWA H, YASUDA M, NOUWEN N, TEAUMROONG N, GIRAUD E. Rhizobium-legume symbiosis in the absence of Nod factors:two possible scenarios with or without the T3SS[J]. The ISME Journal, 2016, 10(1):64-74.
    [30] 荆晓姝, 丁燕, 韩晓梅, 王哲, 高德艳. 联合固氮菌的合成生物学研究进展[J]. 微生物学报, 2021, 61(10):3026-3034. JING XS, DING Y, HAN XM, WANG Z, GAO DY. Advances in synthetic biology of associated nitrogen-fixation bacteria[J]. Acta Microbiologica Sinica, 2021, 61(10):3026-3034(in Chinese).
    [31] GUAN CF, FU WT, ZHANG XG, LI ZM, ZHU YL, CHEN FY, JI J, WANG G, GAO XP. Enhanced phytoremediation efficiency of PHE-contaminated soil by rape (Brassica napus L.) assisted with PHE-degradable PGPR through modulating rhizobacterial communities[J]. Industrial Crops and Products, 2023, 202:117057.
    [32] 刘婉慧. 吡咯伯克霍尔德氏菌JK-SH007合成IAA及其吲哚-3-乙酰胺途径分析[D]. 南京:南京林业大学硕士学位论文, 2020. LIU WH. Synthesis of IAA and its indole-3-acetamide pathway analysis by Burkholderia pyrrocinia JK-SH007[D]. Nanjing:Master's thesis of Nanjing Forestry University, 2020(in Chinese).
    [33] 霍会玲. 罗布泊不同地区红柳叶片生理特征对区域环境的响应[D]. 石家庄:河北师范大学硕士学位论文, 2023. HUO HL. Response of physiological characteristics of Salix leaves in different areas of Lop Nur to regional environment[D]. Shijiazhuang:Master's Thesis of Hebei Normal University, 2023(in Chinese).
    [34] 张林, 陈翔, 吴宇, 于敏, 蔡洪梅, 柳彬彬, 倪芊芊, 刘绿洲, 许辉, 房浩, 李金才. 脯氨酸在植物抗逆中的研究进展[J]. 江汉大学学报(自然科学版), 2023, 51(1):42-51. ZHANG L, CHEN X, WU Y, YU M, CAI HM, LIU BB, NI QQ, LIU LZ, XU H, FANG H, LI JC. Research progress of proline in plant stress resistance[J]. Journal of Jianghan University (Natural Science Edition), 2023, 51(1):42-51(in Chinese).
    [35] 魏婧, 徐畅, 李可欣, 贺洪军, 徐启江. 超氧化物歧化酶的研究进展与植物抗逆性[J]. 植物生理学报, 2020, 56(12):2571-2584. WEI J, XU C, LI KX, HE HJ, XU QJ. Progress on superoxide dismutase and plant stress resistance[J]. China Industrial Economics, 2020, 56(12):2571-2584(in Chinese).
    [36] 鲁敏, 高鹏, 赵洁, 张凌方, 卢佳欢, 崔琰. 苯污染胁迫下室内植物POD活性与MDA含量变化分析研究[J]. 山东建筑大学学报, 2017, 32(3):205-211. LU M, GAO P, ZHAO J, ZHANG LF, LU JH, CUI Y. Study on changes of peroxidase activity and malondialdehyde content in indoor plants under indoor benzene pollution[J]. Journal of Shandong Jianzhu University, 2017, 32(3):205-211(in Chinese).
    [37] VÁZQUEZ-LUNA D. Biological indices of toxicity in tropical legumes grown in oil-contaminated soil[J]. Ecological Indicators, 2015, 53:43-48.
    [38] CALDWELL BA. Enzyme activities as a component of soil biodiversity:a review[J]. Pedobiologia, 2005, 49(6):637-644.
    [39] 李炜. 油污土壤修复过程中土壤酶活性及微生物群落结构变化[D]. 西安:西安建筑科技大学硕士学位论文, 2017. LI W. The effect of bioremediation on soil enzymatic activity and microbial community[D]. Xi'an:Master's Thesis of Xi'an University of Architecture and Technology, 2017(in Chinese).
    [40] DINDAR E, TOPAÇ ŞAĞBAN FO, BAŞKAYA HS. Variations of soil enzyme activities in petroleum-hydrocarbon contaminated soil[J]. International Biodeterioration & Biodegradation, 2015, 105:268-275.
    [41] PINTO VILAR R, IKUMA K. Adsorption of urease as part of a complex protein mixture onto soil and its implications for enzymatic activity[J]. Biochemical Engineering Journal, 2021, 171:108026.
    [42] 王傲. 微生物-盐生植物模式降解石油烃的机理及细菌群落分析[D]. 天津:天津科技大学硕士学位论文, 2022. WANG A. Mechanism and bacterial community analysis of petroleum hydrocarbon degradation by microorganism-halophyte model[D]. Tianjin:Master's Thesis of Tianjin University of Science & Technology, 2022(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

柳晓东,余天飞,邓振山,范晓虹,张薇,杨昱,何颖,艾加敏,姜影影. Neorhizobium petrolearium OS53联合紫花苜蓿协同修复石油污染土壤研究[J]. 微生物学报, 2024, 64(3): 854-868

复制
分享
文章指标
  • 点击次数:216
  • 下载次数: 615
  • HTML阅读次数: 467
  • 引用次数: 0
历史
  • 收稿日期:2023-08-30
  • 最后修改日期:2023-10-26
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码