H4K5去乙酰化对镍胁迫下酿酒酵母细胞壁完整性途径的调控作用
作者:
基金项目:

国家自然科学基金(21767020);自治区直属高校基本科研业务费项目(BR22-15-05,2023RCTD019)


H4K5 deacetylation regulates cell wall integrity pathway in Saccharomyces cerevisiae exposed to nickel stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [12]
  • | | |
  • 文章评论
    摘要:

    【目的】金属镍(nickel, Ni)是人类广泛接触的重金属污染物之一,镍暴露会激活细胞内的细胞壁完整性(cell wall integrity, CWI)信号通路,也会导致细胞内组蛋白乙酰化水平降低,但CWI途径在镍胁迫时是否受组蛋白乙酰化调控尚不完全清楚。【方法】利用组蛋白定点突变型菌株H4K5R (模拟去乙酰化状态),分析镍胁迫下H4K5去乙酰化对酿酒酵母CWI途径的调控作用【结果】与野生型菌株相比,定点突变型菌株H4K5R具有较强的镍抗性:在5.0 mmol/L NiCl2胁迫下,定点突变型菌株仍能生长良好;Western blotting与qRT-PCR结果表明,野生型菌株BY4741在5.0 mmol/L NiCl2胁迫下细胞壁完整性途径被激活,甘露聚糖与葡聚糖调控基因Mnn9表达量显著上调3.13倍、Fks1表达量显著上调1.49倍,甘露聚糖、β-葡聚糖的含量也增加,说明此时野生型菌株激活了CWI途径,细胞壁成分含量增加;定点突变型菌株H4K5R在5.0 mmol/L NiCl2胁迫下CWI途径激活程度较轻,虽然Mnn9Fks1表达量上调,但甘露聚糖含量变化并不显著,而相较于野生型菌株β-葡聚糖含量增加幅度较小。【结论】在5.0 mmol/L NiCl2胁迫下,定点突变型菌株H4K5位点的去乙酰化调控CWI途径,进而影响细胞壁组分的变化。

    Abstract:

    [Objective] Nickel (Ni) is one of the heavy metal pollutants to which humans are widely exposed, and nickel exposure activates the cell wall integrity (CWI) signaling pathway, which lowers the level of intracellular histone acetylation. However, whether the CWI pathway is regulated by histone acetylation under nickel stress remains to be fully understood. [Methods] We used the histone-targeted mutant strain H4K5R (mimicking the deacetylated state) to study the regulation of the CWI pathway in Saccharomyces cerevisiae by H4K5 deacetylation under nickel stress, aiming to lay a foundation for unveiling the regulatory role of histone modifications in eukaryotes in response to heavy metal stress. [Results] Compared with the wildtype strain, H4K5R had strong nickel resistance, being able to grow in the presence of 5.0 mmol/L NiCl2. The results of Western blotting and qRT-PCR showed that the CWI pathway of the wildtype strain BY4741 was activated under 5.0 mmol/L NiCl2, with the expression of Mnn9 (encoding α-1,6-mannosyl transferase) and Fks1 (encoding glucan synthase) being up-regulated by 3.13 folds and 1.49 folds, respectively. Moreover, the content of mannan and β-glucan were increased, which indicated that the wildtype strain activated the CWI pathway to increase the content of cell wall component. The activation of the CWI pathway in H4K5R was mild under the stress of 5.0 mmol/L NiCl2. Although the expression of Mnn9 and Fks1 was up-regulated, the changes in mannan content were not significant, and the increase in β-glucan content was less than that of the wildtype strain. [Conclusion] Under 5.0 mmol/L NiCl2 stress, the deacetylation of H4K5 in the mutant strain regulated the CWI pathway, which affected the changes in cell wall components.

    参考文献
    [1] DUMALA N, MANGALAMPALLI B, KALYAN KAMAL SS, GROVER P. Repeated oral dose toxicity study of nickel oxide nanoparticles in Wistar rats:a histological and biochemical perspective[J]. Journal of Applied Toxicology, 2019, 39(7):1012-1029.
    [2] SALNIKOW K, ZHITKOVICH A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis:nickel, arsenic, and chromium[J]. Chemical Research in Toxicology, 2008, 21(1):28-44.
    [3] ARITA A, COSTA M. Epigenetics in metal carcinogenesis:nickel, arsenic, chromium and cadmium[J]. Metallomics:Integrated Biometal Science, 2009, 1(3):222-228.
    [4] HERSCOVICS A, ORLEAN P. Glycoprotein biosynthesis in yeast[J]. The FASEB Journal, 1993, 7(6):540-550.
    [5] KLIS FM, BOORSMA A, de GROOT PWJ. Cell wall construction in Saccharomyces cerevisiae[J]. Yeast, 2006, 23(3):185-202.
    [6] SMITH AE, ZHANG Z, THOMAS CR, MOXHAM KE, MIDDELBERG AP. The mechanical properties of Saccharomyces cerevisiae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(18):9871-9874.
    [7] CABIB E, ROH DH, SCHMIDT M, CROTTI LB, VARMA A. The yeast cell wall and septum as paradigms of cell growth and morphogenesis[J]. Journal of Biological Chemistry, 2001, 276(23):19679-19682.
    [8] INOUE SB, QADOTA H, ARISAWA M, ANRAKU Y, WATANABE T, OHYA Y. Signaling toward yeast 1,3-β-glucan synthesis[J]. Cell Structure and Function, 1996, 21(5):395-402.
    [9] VALDIVIA RH, SCHEKMAN R. The yeasts Rho1p and Pkc1p regulate the transport of chitin synthase III (Chs3p) from internal stores to the plasma membrane[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(18):10287-10292.
    [10] LEVIN DE. Regulation of cell wall biogenesis in Saccharomyces cerevisiae:the cell wall integrity signaling pathway[J]. Genetics, 2011, 189(4):1145-1175.
    [11] KIM KY, LEVIN DE. Mpk1 MAPK association with the Paf1 complex blocks Sen1-mediated premature transcription termination[J]. Cell, 2011, 144(5):745-756.
    [12] JAMES E, FERRELL J. Tripping the switch fantastic:how a protein kinase cascade can convert graded inputs into switch-like outputs[J]. Trends in Biochemical Sciences, 1996, 21(12):460-466.
    [13] CHI YF, HUANG, JAMES E, FERRELL JR. Ultrasensitivity in the mitogen-activated protein kinase cascade[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(19):10078-10083.
    [14] KIM KY, TRUMAN AW, CAESAR S, SCHLENSTEDT G, LEVIN DE. Yeast Mpk1 cell wall integrity mitogen-activated protein kinase regulates nucleocytoplasmic shuttling of the Swi6 transcriptional regulator[J]. Molecular Biology of the Cell, 2010, 21(9):1609-1619.
    [15] KANG JH, ZHANG YT, CHEN J, CHEN HF, LIN CJ, WANG Q, OU YX. Nickel-induced histone hypoacetylation:the role of reactive oxygen species[J]. Toxicological Sciences, 2003, 74(2):279-286.
    [16] SMITH BC, DENU JM. Chemical mechanisms of histone lysine and arginine modifications[J]. Biochimica et Biophysica Acta, 2009, 1789(1):45-57.
    [17] DAI JB, HYLAND EM, YUAN DS, HUANG HL, BADER JS, BOEKE JD. Probing nucleosome function:a highly versatile library of synthetic histone H3 and H4 mutants[J]. Cell, 2008, 134(6):1066-1078.
    [18] 李维维, 顿宝庆, 王智, 曲娟娟. 一种改良的热酚法高效快速提取酿酒酵母总RNA[J]. 生物技术通报, 2012(12):163-166. LI WW, DUN BQ, WANG Z, QU JJ. A modified method for the efficient and fast extraction of total RNA from Saccharomyces cerevisiae with hot-phenol[J]. Biotechnology Bulletin, 2012(12):163-166(in Chinese).
    [19] 边金, 郭艳飞, 张治, 张淑慧, 赵秀娟. 组蛋白修饰对酿酒酵母复制起始相关蛋白基因表达的调控[J]. 基因组学与应用生物学, 2019, 38(6):2596-2602. BIAN J, GUO YF, ZHANG Z, ZHANG SH, ZHAO XJ. The regulation of histone modifications on DNA replication initiation proteins of Saccharomyces cerevisiae[J]. Genomics and Applied Biology, 2019, 38(6):2596-2602(in Chinese).
    [20] 赵风光. 细胞壁干扰剂作用下的酿酒酵母的化学基因组学响应机制研究[D]. 广州:华南理工大学博士学位论文, 2020. ZHAO FG. Chemogenomic response mechanism of Saccharomyces cerevisiae to cell wall antagonists[D]. Guangzhou:Doctoral Dissertation of South China University of Technology, 2020(in Chinese).
    [21] ZORODDU MA, SCHINOCCA L, KOWALIK-JANKOWSKA T, KOZLOWSKI H, SALNIKOW K, COSTA M. Molecular mechanisms in nickel carcinogenesis:modeling Ni(II) binding site in histone H4[J]. Environmental Health Perspectives, 2002, 110(Suppl 5):719-723.
    [22] KASPRZAK KS, JR SUNDERMAN FW, SALNIKOW K. Nickel carcinogenesis[J]. Mutation Research, 2003, 533(1-2):67-97.
    [23] BRODAY L, PENG W, KUO MH, SALNIKOW K, ZORODDU M, COSTA M. Nickel compounds are novel inhibitors of histone H4 acetylation[J]. Cancer Research, 2000, 60(2):238-241.
    [24] KARACZYN AA, GOLEBIOWSKI F, KASPRZAK KS. Truncation, deamidation, and oxidation of histone H2B in cells cultured with nickel(II)[J]. Chemical Research in Toxicology, 2005, 18(12):1934-1942.
    [25] CHERVONA Y, ARITA A, COSTA M. Carcinogenic metals and the epigenome:understanding the effect of nickel, arsenic, and chromium[J]. Metallomics, 2012, 4(7):619-627.
    [26] KARACZYN AA, GOLEBIOWSKI F, KASPRZAK KS. Ni(II) affects ubiquitination of core histones H2B and H2A[J]. Experimental Cell Research, 2006, 312(17):3252-3259.
    [27] FRAGOU D, FRAGOU A, KOUIDOU S, NJAU S, KOVATSI L. Epigenetic mechanisms in metal toxicity[J]. Toxicology Mechanisms and Methods, 2011, 21(4):343-352.
    [28] 郭艳飞, 黄勇霖, 张苗苗, 蔡禄, 赵秀娟. 高浓度氯化镍胁迫下酿酒酵母组蛋白H4K5去乙酰化调控金属硫蛋白基因的表达[J]. 应用与环境生物学报, 2020, 26(3):551-557. GUO YF, HUANG YL, ZHANG MM, CAI L, ZHAO XJ. Deacetylation of histone H4K5 regulates the expression of metallothionein genes under high concentration of nickel chloride in Saccharomyces cerevisiae[J]. Chinese Journal of Applied & Environmental Biology, 2020, 26(3):551-557(in Chinese).
    [29] ZORODDU MA, PEANA M, MEDICI S, CASELLA L, MONZANI E, COSTA M. Nickel binding to histone H4[J]. Dalton Transactions, 2010, 39(3):787-793.
    [30] LENARDON MD, SOOD P, DORFMUELLER HC, BROWN AJP, GOW NAR. Scalar nanostructure of the Candida albicans cell wall:a molecular, cellular and ultrastructural analysis and interpretation[J]. The Cell Surface, 2020, 6:100047.
    [31] GOW NAR, LATGE JP, MUNRO CA. The fungal cell wall:structure, biosynthesis, and function[J]. Microbiology Spectrum, 2017, 5(3):1-25.
    [32] KOLLÁR R, PETRÁKOVÁ E, ASHWELL G, ROBBINS PW, CABIB E. Architecture of the yeast cell wall[J]. Journal of Biological Chemistry, 1995, 270(3):1170-1178.
    [33] BALLOU L, COHEN RE, BALLOU CE. Saccharomyces cerevisiae mutants that make mannoproteins with a truncated carbohydrate outer chain[J]. The Journal of Biological Chemistry, 1980, 255(12):5986-5991.
    [34] HASHIMOTO H, YODA K. Novel membrane protein complexes for protein glycosylation in the yeast Golgi apparatus[J]. Biochemical and Biophysical Research Communications, 1997, 241(3):682-686.
    [35] KOJIMA H, HASHIMOTO H, YODA K. Interaction among the subunits of Golgi membrane mannosyltransferase complexes of the yeast Saccharomyces cerevisiae[J]. Bioscience, Biotechnology, and Biochemistry, 1999, 63(11):1970-1976.
    [36] HERNANDEZ LM, BALLOU L, ALVARADO E, TSAI PK, BALLOU CE. Structure of the phosphorylated N-linked oligosaccharides from the mnn9 and mnn10 mutants of Saccharomyces cerevisiae[J]. The Journal of Biological Chemistry, 1989, 264(23):13648-13659.
    [37] JUNGMANN J, MUNRO S. Multi-protein complexes in the cis Golgi of Saccharomyces cerevisiae with α-1,6-mannosyltransferase activity[J]. The EMBO Journal, 1998, 17(2):423-434.
    [38] JUNGMANN J, RAYNER JC, MUNRO S. The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of a Golgi mannosyltransferase complex[J]. Journal of Biological Chemistry, 1999, 274(10):6579-6585.
    [39] RAYNER JC, MUNRO S. Identification of the MNN2 and MNN5 mannosyltransferases required for forming and extending the mannose branches of the outer chain mannans of Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1998, 273(41):26836-26843.
    [40] LUSSIER M, SDICU AM, BUSSEY H. The KTR and MNN1 mannosyltransferase families of Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta (BBA)-General Subjects, 1999, 1426(2):323-334.
    [41] KETELA T, GREEN R, BUSSEY H. Saccharomyces cerevisiae mid2p is a potential cell wall stress sensor and upstream activator of the PKC1-MPK1 cell integrity pathway[J]. Journal of Bacteriology, 1999, 181(11):3330-3340.
    [42] AELST LV, D'SOUZA-SCHOREY C. Rho GTPases and signaling networks[J]. Genes & Development, 1997, 11(18):2295-2322.
    [43] HALL A. Rho GTPases and the actin cytoskeleton[J]. Science, 1998, 279(5350):509-514.
    [44] SCHMIDT A, HALL MN. Signaling to the actin cytoskeleton[J]. Annual Review of Cell and Developmental Biology, 1998, 14:305-338.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

包娜娜,郭艳飞,刘冬冬,赵秀娟. H4K5去乙酰化对镍胁迫下酿酒酵母细胞壁完整性途径的调控作用[J]. 微生物学报, 2024, 64(3): 869-881

复制
分享
文章指标
  • 点击次数:234
  • 下载次数: 814
  • HTML阅读次数: 340
  • 引用次数: 0
历史
  • 收稿日期:2023-08-31
  • 最后修改日期:2023-12-11
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码