铜绿假单胞菌fur基因缺失突变株的构建及其表型分析
作者:
基金项目:

国家自然科学基金(32070103,31860012,32360015);陕西省秦创原“科学家+工程师”队伍建设项目(2023KXJ-019);陕西省“特支计划”区域发展人才项目(2020-44);陕西省普通高等学校青年杰出人才支持计划项目(2018-111);陕西高校青年创新团队(2022-943);陕西省大学生创新创业训练计划项目(S202210719132);延安大学科研计划项目(2023HBZ-001, 2023CGZH-007)


Construction and phenotypic characterization of fur-deleted mutant of Pseudomonas aeruginosa
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    铁摄取调节蛋白(ferric uptake regulator, Fur)是控制铜绿假单胞菌铁代谢和毒力的关键调节因子。许多课题组尝试构建铜绿假单胞菌fur的缺失突变株均失败,因此铜绿假单胞菌的fur一直被认为是必需基因,这导致其生物学功能一直未得到全面的解析。【目的】构建铜绿假单胞菌fur的缺失突变株,并对该突变株的表型进行分析。【方法】以铜绿假单胞菌PAO1为亲本菌株,通过同源重组的方法构建fur缺失突变株,研究该基因对铜绿假单胞菌生长、铁载体生物合成、抗氧胁迫能力、鞭毛形成、生物被膜形成和毒力等的影响。同时,通过遗传分析对fur缺失突变株生长缺陷表型的原因进行探究。【结果】本研究成功构建了铜绿假单胞菌fur基因的缺失突变株,发现缺失突变fur极大地限制了铜绿假单胞菌的生长能力,并降低了该菌对限铁环境的生长适应性,但不影响该菌对高铁环境的生长适应性。铜绿假单胞菌Δfur的这种生长缺陷表型是细胞生长增殖变慢造成的,而不是诱导细胞死亡引起的。然而,其他异源的fur基因能完全互补Δfur的这种生长缺陷表型,暗示铜绿假单胞菌的Fur蛋白在功能上不存在独特性。尽管Fur与毒素-抗毒素系统PacTA存在功能关联性,但是铜绿假单胞菌Δfur的这种生长缺陷表型却与PacT毒素无关。除了影响铜绿假单胞菌的生长表型,缺失突变fur还使铜绿假单胞菌丧失了对铁载体生物合成的抑制作用,导致该菌对H2O2更敏感并丧失了鞭毛的形成能力,同时降低了该菌对大蜡螟幼虫的毒力。此外,缺失突变fur还显著提升了铜绿假单胞菌的胞内环二鸟苷酸(cyclic diguanylate, c-di-GMP)水平,从而诱导pelFpslA基因的表达,进而促进铜绿假单胞菌生物被膜的形成。【结论】fur是可以缺失的非必需基因,在铜绿假单胞菌的正常生长、铁载体生物合成、抗氧胁迫能力、鞭毛形成、生物被膜形成和毒力等方面都发挥着十分重要的作用,这为针对铜绿假单胞菌的疫苗和抗菌药物开发奠定了基础。

    Abstract:

    Ferric uptake regulator (Fur) is a key regulatory factor of iron metabolism and virulence in Pseudomonas aeruginosa. Many research groups have failed to construct the fur-deleted mutant of P. aeruginosa, so fur has always been considered to be an essential gene in P. aeruginosa, and the knowledge of its biological function is limited. 【Objective】 This study aims to construct a fur-deleted mutant of P. aeruginosa and analyze its phenotypes. 【Methods】 With P. aeruginosa PAO1 as the parental strain, the fur-deleted mutant was constructed by homologous recombination. After that, we studied the effects of fur on the growth, siderophore biosynthesis, resistance to oxygen stress, flagella formation, biofilm formation, and virulence of P. aeruginosa. In addition, we explored the cause of the growth defect phenotype of the fur-deleted mutant by genetic analysis. 【Results】 The fur-deleted mutant of P. aeruginosa was successfully constructed. The deletion of fur greatly limited the growth of P. aeruginosa and reduced the growth adaptability of P. aeruginosa to the iron-limited environment, while it did not affect the growth adaptability of P. aeruginosa to the iron-rich environment. This growth defect phenotype of Δfur was caused by the slow cell growth and proliferation, rather than by cell death. Interestingly, heterologous fur could completely complement the growth defect phenotype of Δfur, suggesting that the Fur of P. aeruginosa was not functionally unique. Although there was a functional relationship between Fur and the toxin-antitoxin system PacTA, the growth defect phenotype of P. aeruginosa Δfur was not associated with PacT toxin. In addition to affecting the growth phenotype of P. aeruginosa, the deletion of fur also made P. aeruginosa lose the inhibitory effect on siderophore biosynthesis and the ability to form flagella and have increased sensitivity to H2O2 and reduced virulence to Galleria mellonella larvae. Moreover, the deletion of fur increased the intracellular cyclic diguanylate (c-di-GMP) level of P. aeruginosa to induce the expression of pelF and pslA, thereby promoting the biofilm formation of P. aeruginosa. 【Conclusion】 fur is a non-essential gene that can be deleted and plays a crucial role in the normal growth, siderophore biosynthesis, resistance to oxygen stress, flagellum formation, biofilm formation, and virulence of P. aeruginosa, which lays a foundation for the development of vaccines and agents against P. aeruginosa.

    参考文献
    [1] DRAKESMITH H, PRENTICE A. Viral infection and iron metabolism[J]. Nature Reviews Microbiology, 2008, 6(7):541-552.
    [2] IMLAY JA. Cellular defenses against superoxide and hydrogen peroxide[J]. Annual Review of Biochemistry, 2008, 77:755-776.
    [3] ACHARD MES, CHEN KW, SWEET MJ, WATTS RE, SCHRODER K, SCHEMBRI MA, MCEWAN AG. An antioxidant role for catecholate siderophores in Salmonella[J]. Biochemical Journal, 2013, 454(3):543-549.
    [4] SCHALK IJ, PERRAUD Q. Pseudomonas aeruginosa and its multiple strategies to access iron[J]. Environmental Microbiology, 2023, 25(4):811-831.
    [5] PASQUA M, VISAGGIO D, LO SCIUTO A, GENAH S, BANIN E, VISCA P, IMPERI F. Ferric uptake regulator Fur is conditionally essential in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2017, 199(22):e00472-e00417.
    [6] 王志鹏, 于海英, 马旅雁. 铜绿假单胞菌铁摄取调节子Fur诱导表达突变株构建及表型分析[J]. 生物工程学报, 2021, 37(9):3253-3267. WANG ZP, YU HY, MA LY. Construction and phenotypic study of Pseudomonas aeruginosa inducibly expressing a ferric uptake regulator[J]. Chinese Journal of Biotechnology, 2021, 37(9):3253-3267(in Chinese).
    [7] PORCHERON G, DOZOIS CM. Interplay between iron homeostasis and virulence:Fur and RyhB as major regulators of bacterial pathogenicity[J]. Veterinary Microbiology, 2015, 179(1/2):2-14.
    [8] FILLAT MF. The FUR (ferric uptake regulator) superfamily:diversity and versatility of key transcriptional regulators[J]. Archives of Biochemistry and Biophysics, 2014, 546:41-52.
    [9] TROXELL B, HASSAN HM. Transcriptional regulation by ferric uptake regulator (Fur) in pathogenic bacteria[J]. Frontiers in Cellular and Infection Microbiology, 2013, 3:59.
    [10] ZHANG FY, LI BQ, DONG HJ, CHEN M, YAO S, LI JW, ZHANG HH, LIU XG, WANG HW, SONG NN, ZHANG KD, DU N, XU SJ, GU LC. YdiV regulates Escherichia coli ferric uptake by manipulating the DNA-binding ability of Fur in a SlyD-dependent manner[J]. Nucleic Acids Research, 2020, 48(17):9571-9588.
    [11] GAO H, MA LZ, QIN Q, QIU Y, ZHANG JY, LI J, LOU J, DIAO BW, ZHAO HQ, SHI QN, ZHANG YQ, KAN B. Fur represses Vibrio cholerae biofilm formation via direct regulation of vieSAB, cdgD, vpsU, and vpsA-K transcription[J]. Frontiers in Microbiology, 2020, 11:587159.
    [12] ASKOURA M, SARVAN S, COUTURE JF, STINTZI A. The Campylobacter jejuni ferric uptake regulator promotes acid survival and cross-protection against oxidative stress[J]. Infection and Immunity, 2016, 84(5):1287-1300.
    [13] SANTOS RERS, BATISTA BB, da SILVA NETO JF. Ferric uptake regulator Fur coordinates siderophore production and defense against iron toxicity and oxidative stress and contributes to virulence in Chromobacterium violaceum[J]. Applied and Environmental Microbiology, 2020, 86(21):e01620-20.
    [14] PORCHERON G, HABIB R, HOULE S, CAZA M, LÉPINE F, DAIGLE F, MASSÉ E, DOZOIS CM. The small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli[J]. Infection and Immunity, 2014, 82(12):5056-5068.
    [15] ZHU CR, NGELEKA M, POTTER AA, ALLAN BJ. Effect of fur mutation on acid-tolerance response and in vivo virulence of avian septicemic Escherichia coli[J]. Canadian Journal of Microbiology, 2002, 48(5):458-462.
    [16] KURABAYASHI K, AGATA T, ASANO H, TOMITA H, HIRAKAWA H. Fur represses adhesion to, invasion of, and intracellular bacterial community formation within bladder epithelial cells and motility in uropathogenic Escherichia coli[J]. Infection and Immunity, 2016, 84(11):3220-3231.
    [17] HUSAIN M, JONES-CARSON J, LIU L, SONG M, SAAH JR, TROXELL B, MENDOZA M, HASSAN H, VÁZQUEZ-TORRES A. Ferric uptake regulator- dependent antinitrosative defenses in Salmonella enterica serovar typhimurium pathogenesis[J]. Infection and Immunity, 2014, 82(1):333-340.
    [18] AJIBOYE TO, SKIEBE E, WILHARM G. Contributions of ferric uptake regulator Fur to the sensitivity and oxidative response of Acinetobacter baumannii to antibiotics[J]. Microbial Pathogenesis, 2018, 119:35-41.
    [19] BARTON HA, JOHNSON Z, COX CD, VASIL AI, VASIL ML. Ferric uptake regulator mutants of Pseudomonas aeruginosa with distinct alterations in the iron-dependent repression of exotoxin A and siderophores in aerobic and microaerobic environments[J]. Molecular Microbiology, 1996, 21(5):1001-1017.
    [20] PRINCE RW, COX CD, VASIL ML. Coordinate regulation of siderophore and exotoxin A production:molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene[J]. Journal of Bacteriology, 1993, 175(9):2589-2598.
    [21] RODRIGUEZ GM, VOSKUIL MI, GOLD B, SCHOOLNIK GK, SMITH I. ideR, an essential gene in mycobacterium tuberculosis:role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response[J]. Infection and Immunity, 2002, 70(7):3371-3381.
    [22] YIN R, CHENG JL, WANG JY, LI PX, LIN JS. Treatment of Pseudomonas aeruginosa infectious biofilms:challenges and strategies[J]. Frontiers in Microbiology, 2022, 13:955286.
    [23] WANG ST, CHENG JL, NIU YT, LI PX, ZHANG XQ, LIN JS. Strategies for zinc uptake in Pseudomonas aeruginosa at the host-pathogen interface[J]. Frontiers in Microbiology, 2021, 12:741873.
    [24] LLAMAS MA, SÁNCHEZ-JIMÉNEZ A. Iron homeostasis in Pseudomonas aeruginosa:targeting iron acquisition and storage as an antimicrobial strategy[M]. Advances in Experimental Medicine and Biology. Cham:Springer International Publishing, 2022:29-68.
    [25] PALMA M, WORGALL S, QUADRI LEN. Transcriptome analysis of the Pseudomonas aeruginosa response to iron[J]. Archives of Microbiology, 2003, 180(5):374-379.
    [26] OCHSNER UA, VASIL ML. Gene repression by the ferric uptake regulator in Pseudomonas aeruginosa:cycle selection of iron-regulated genes[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(9):4409-4414.
    [27] OCHSNER UA, WILDERMAN PJ, VASIL AI, VASIL ML. GeneChip® expression analysis of the iron starvation response in Pseudomonas aeruginosa:identification of novel pyoverdine biosynthesis genes[J]. Molecular Microbiology, 2002, 45(5):1277-1287.
    [28] CORNELIS P, MATTHIJS S, OEFFELEN LV. Iron uptake regulation in Pseudomonas aeruginosa[J]. Biometals, 2009, 22(1):15-22.
    [29] VISCA P, IMPERI F. An essential transcriptional regulator:the case of Pseudomonas aeruginosa Fur[J]. Future Microbiology, 2018, 13(8):853-856.
    [30] HASSETT DJ, SOKOL PA, HOWELL ML, MA JF, SCHWEIZER HT, OCHSNER U, VASIL ML. Ferric uptake regulator (Fur) mutants of Pseudomonas aeruginosa demonstrate defective siderophore-mediated iron uptake, altered aerobic growth, and decreased superoxide dismutase and catalase activities[J]. Journal of Bacteriology, 1996, 178(14):3996-4003.
    [31] LIN JS, ZHANG WP, CHENG JL, YANG X, ZHU KX, WANG Y, WEI GH, QIAN PY, LUO ZQ, SHEN XH. A Pseudomonas T6SS effector recruits PQS-containing outer membrane vesicles for iron acquisition[J]. Nature Communications, 2017, 8:14888.
    [32] SCHÄFER A, TAUCH A, JÄGER W, KALINOWSKI J, THIERBACH G, PÜHLER A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19:selection of defined deletions in the chromosome of Corynebacterium glutamicum[J]. Gene, 1994, 145(1):69-73.
    [33] DENNIS JJ, ZYLSTRA GJ. Plasposons:modular self-cloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes[J]. Applied and Environmental Microbiology, 1998, 64(7):2710-2715.
    [34] HEEB S, BLUMER C, HAAS D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0[J]. Journal of Bacteriology, 2002, 184(4):1046-1056.
    [35] KOVACH ME, ELZER PH, HILL DS, ROBERTSON GT, FARRIS MA, ROOP RM II, PETERSON KM. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic- resistance cassettes[J]. Gene, 1995, 166(1):175-176.
    [36] BECHER A, SCHWEIZER HP. Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions[J]. BioTechniques, 2000, 29(5):948-950, 952.
    [37] LIN JS, CHENG JL, CHEN KQ, GUO CH, ZHANG WP, YANG X, DING W, MA L, WANG Y, SHEN XH. The icmF3 locus is involved in multiple adaptation-and virulence-related characteristics in Pseudomonas aeruginosa PAO1[J]. Frontiers in Cellular and Infection Microbiology, 2015, 5:70.
    [38]
    [38] HUBER B, RIEDEL K, KÖTHE M, GIVSKOV M, MOLIN S, EBERL L. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111[J]. Molecular Microbiology, 2002, 46(2):411-426.
    [39] MEYER JM, ABDALLAH MA. The fluorescent pigment of Pseudomonas fluorescens:biosynthesis, purification and physicochemical properties[J]. Journal of General Microbiology, 1978, 107(2):319-328.
    [40] CORNELIS P, ANJAIAH V, KOEDAM N, DELFOSSE P, JACQUES P, THONART P, NEIRINCKX L. Stability, frequency and multiplicity of transposon insertions in the pyoverdine region in the chromosomes of different fluorescent pseudomonads[J]. Journal of General Microbiology, 1992, 138(7):1337-1343.
    [41] LIN JS, YANG JS, CHENG JL, ZHANG WP, YANG X, DING W, ZHANG H, WANG Y, SHEN XH. Pseudomonas aeruginosa H3-T6SS combats H2O2 stress by diminishing the amount of intracellular unincorporated iron in a dps-dependent manner and inhibiting the synthesis of PQS[J]. International Journal of Molecular Sciences, 2023, 24(2):1614.
    [42] 王帅涛, 牛艳婷, 张恒, 李盼欣, 张宁梅, 成娟丽, 林金水. 靶向破坏铜绿假单胞菌生物被膜的定向蛋白投放技术[J]. 微生物学报, 2021, 61(9):2726-2748. WANG ST, NIU YT, ZHANG H, LI PX, ZHANG NM, CHENG JL, LIN JS. An engineered bacterium for the targeted delivery of proteins to destroy Pseudomonas aeruginosa biofilms[J]. Acta Microbiologica Sinica, 2021, 61(9):2726-2748(in Chinese).
    [43] SONG YJ, ZHANG SP, YE ZR, SONG YY, CHEN L, TONG AP, HE YX, BAO R. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur[J]. Nucleic Acids Research, 2022, 50(18):10586-10600.
    [44] BAKER P, HILL PJ, SNARR BD, ALNABELSEYA N, PESTRAK MJ, LEE MJ, JENNINGS LK, TAM J, MELNYK RA, PARSEK MR, SHEPPARD DC, WOZNIAK DJ, HOWELL PL. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms[J]. Science Advances, 2016, 2(5):e1501632.
    [45] RYBTKE MT, BORLEE BR, MURAKAMI K, IRIE Y, HENTZER M, NIELSEN TE, GIVSKOV M, PARSEK MR, TOLKER-NIELSEN T. Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa[J]. Applied and Environmental Microbiology, 2012, 78(15):5060-5069.
    [46] GARCIA M, MORELLO E, GARNIER J, BARRAULT C, GARNIER M, BURUCOA C, LECRON JC, SI-TAHAR M, BERNARD FX, BODET C. Pseudomonas aeruginosa flagellum is critical for invasion, cutaneous persistence and induction of inflammatory response of skin epidermis[J]. Virulence, 2018, 9(1):1163-1175.
    [47] CHA JY, LEE JS, OH JI, CHOI JW, BAIK HS. Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528:Fur controls expression of genes involved in quorum-sensing[J]. Biochemical and Biophysical Research Communications, 2008, 366(2):281-287.
    [48] Wang HR, HU YH, ZHANG WW, SUN L. Construction of an attenuated Pseudomonas fluorescens strain and evaluation of its potential as a cross-protective vaccine[J]. Vaccine, 2009, 27(30):4047-4055.
    [49] BECERRA G, MERCHAN F, BLASCO R, IGENO MI. Characterization of a ferric uptake regulator (Fur)-mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT 5344[J]. Journal of Biotechnology, 2014, 190:2-10.
    [50] HUANG LX, ZUO YF, QIN YX, ZHAO LM, LIN M, YAN QP. The zinc nutritional immunity of Epinephelus coioides contributes to the importance of znuC during Pseudomonas plecoglossicida infection[J]. Frontiers in Immunology, 2021, 12:678699.
    [51] BANIN E, VASIL ML, GREENBERG EP. Iron and Pseudomonas aeruginosa biofilm formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31):11076-11081.
    [52] KUCHMA SL, DELALEZ NJ, FILKINS LM, SNAVELY EA, ARMITAGE JP, O'TOOLE GA. Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator[J]. Journal of Bacteriology, 2015, 197(3):420-430.
    [53] XIN LY, ZENG YK, SHENG S, CHEA RA, LIU Q, LI HY, YANG L, XU LH, CHIAM KH, LIANG ZX. Regulation of flagellar motor switching by c-di-GMP phosphodiesterases in Pseudomonas aeruginosa[J]. The Journal of Biological Chemistry, 2019, 294(37):13789-13799.
    [54] STARKEY M, HICKMAN JH, MA LY, ZHANG N, LONG SD, HINZ A, PALACIOS S, MANOIL C, KIRISITS MJ, STARNER TD, WOZNIAK DJ, HARWOOD CS, PARSEK MR. Pseudomonas aeruginosa rugose small-colony variants have adaptations that likely promote persistence in the cystic fibrosis lung[J]. Journal of Bacteriology, 2009, 191(11):3492-3503.
    [55] BARAQUET C, HARWOOD CS. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46):18478-18483.
    [56] 洪义东, 胡楠, 卞宝祥, 宋子琰, 吴风雷. 铜绿假单胞菌注射液抗肿瘤作用及其相关机制的研究进展[J]. 中国现代应用药学, 2019, 36(2):256-259. HONG YD, HU N, BIAN BX, SONG ZY, WU FL. Research advances in the mechanisms for anti-tumor effect of Pseudomonas aeruginosa injection[J]. Chinese Journal of Modern Applied Pharmacy, 2019, 36(2):256-259(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马鑫,李雯雯,肖维,成娟丽,林金水. 铜绿假单胞菌fur基因缺失突变株的构建及其表型分析[J]. 微生物学报, 2024, 64(3): 917-937

复制
分享
文章指标
  • 点击次数:396
  • 下载次数: 606
  • HTML阅读次数: 431
  • 引用次数: 0
历史
  • 收稿日期:2023-10-12
  • 最后修改日期:2023-12-06
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码