一种源自人α-2-巨球蛋白的抗菌肽A2M3及其对金黄色葡萄球菌的抑菌机制
作者:
基金项目:

福建省高校产学合作项目(2023N5008);厦门市科技补助项目(2023CXY0305)


A novel antimicrobial peptide A2M3 derived from human alpha-2-macroglobulin inhibits Staphylococcus aureus
Author:
  • FAN Xuenan

    FAN Xuenan

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Rong

    LIN Rong

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center for Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Ritian

    JIN Ritian

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center for Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Duo

    LIANG Duo

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center for Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • QIU Xujian

    QIU Xujian

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center for Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Shen

    YANG Shen

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center for Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [44]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】在人的鼻腔中鉴定出一种源自α-2-巨球蛋白的抗菌肽(命名为A2M3),并探究其对金黄色葡萄球菌(Staphylococcus aureus)的抑菌作用和机制。【方法】结合生物信息学技术对人类鼻液的质谱结果进行分析,并筛选潜在抗菌肽;通过微量稀释法和平板涂布法分别分析A2M3对金黄色葡萄球菌最低抑菌浓度(minimum inhibitory concentration, MIC)和时间杀伤曲线(time-kill curve);采用透射电镜、碘化丙锭(propidium iodide, PI)摄取实验、流式细胞术和核酸蛋白质泄露实验分析A2M3对金黄色葡萄球菌膜完整性、膜通透性的影响;通过凝胶阻滞实验和荧光光谱实验探究A2M3对金黄色葡萄球菌基因组DNA的影响。【结果】利用生物信息学技术筛选出源自α-2-巨球蛋白的潜在抗菌肽A2M3,其对金黄色葡萄球菌的MIC为125.0 μg/mL,且能在3 h内完全杀灭细菌。A2M3通过增加细胞膜的通透性,促使核酸和蛋白质泄漏,继而穿过细胞膜嵌入DNA的碱基对,影响细菌的基因功能,从而导致菌体死亡。【结论】A2M3对金黄色葡萄球菌的抑菌机制涉及多靶点协同作用,能够改变细菌细胞膜的通透性,影响细菌的基因功能。这一发现揭示了从人体体液中筛选和分离抗菌功能肽的潜在应用价值。

    Abstract:

    【Objective】 To study the inhibitory effect and mechanism of an antimicrobial peptide (A2M3) derived from alpha-2-macroglobulin identified in the human nasal cavity against Staphylococcus aureus. 【Methods】 The mass spectrometry results of the human nasal liquid were analyzed, on the basis of which bioinformatic tools were used for the screening of potential antimicrobial peptides. The minimum inhibitory concentration (MIC) and time-kill curve of A2M3 against S. aureus were determined by the microdilution method and plate colony counting method. Then, transmission electron microscopy, PI uptake assay, flow cytometry, and determination of nucleic acid protein leakage were employed to study the effects of A2M3 on the membrane integrity and permeability of S. aureus. Finally, the effect of A2M3 on the genomic DNA of S. aureus was investigated by the gel retardation assay and fluorescence spectroscopy. 【Results】 A2M3 showed an MIC of 125.0 μg/mL against S. aureus and killed the bacteria completely within 3 h. A2M3 increased the cell membrane permeability to penetrate into S. aureus cells, leading to leakage of nucleic acids and proteins as well as insertion into DNA base pairs to interfere with the gene function, resulting in the death of the cells. 【Conclusion】 The inhibitory mechanism of A2M3 against S. aureus involves multiple targets. The antimicrobial peptide alters the permeability of the bacterial cell membrane and affects the gene function, thus exerting the inhibitory activity. The findings reveal that antimicrobial peptides could be screened and isolated from human body fluids for potential application.

    参考文献
    [1] YANG S, DONG YT, AWEYA JJ, LI J, CHEN XY, ZHANG YL, LIU GM. A hemoglobin-derived antimicrobial peptide, LCH4, from the large yellow croaker (Larimichthys crocea) with potential use as a food preservative[J]. LWT, 2020, 131:109656.
    [2] 谭超, 周靖轩, 卢倩倩, 刘彬彬, 蔡轶, 王君, 邹黎黎. 紫草素与依布硒啉对金黄色葡萄球菌的协同作用[J]. 微生物学报, 2022, 62(3):1049-1060. TAN C, ZHOU JX, LU QQ, LIU BB, CAI Y, WANG J, ZOU LL. The synergistic effect of shikonin and ebselen against Staphylococcus aureus[J]. Acta Microbiologica Sinica, 2022, 62(3):1049-1060(in Chinese).
    [3] 杨思宇, 范钊玮, 李皖豫, 崔玉东. 金黄色葡萄球菌的免疫逃逸策略[J]. 中国免疫学杂志, 2021, 37(15):1908-1913. YANG SY, FAN ZW, LI WY, CUI YD. Immune evasion of Staphylococcus aureus[J]. Chinese Journal of Immunology, 2021, 37(15):1908-1913(in Chinese).
    [4] POLLITT EJG, SZKUTA PT, BURNS N, FOSTER SJ. Staphylococcus aureus infection dynamics[J]. PLoS Pathogens, 2018, 14(6):e1007112.
    [5] CHENG AG, DeDENT AC, SCHNEEWIND O, MISSIAKAS D. A play in four acts:Staphylococcus aureus abscess formation[J]. Trends in Microbiology, 2011, 19(5):225-232.
    [6] GIERSING BK, DASTGHEYB SS, MODJARRAD K, MOORTHY V. Status of vaccine research and development of vaccines for Staphylococcus aureus[J]. Vaccine, 2016, 34(26):2962-2966.
    [7] HOSSEINKHANI F, JABALAMELI F, NODEH FARAHANI N, TAHERIKALANI M, van LEEUWEN WB, EMANEINI M. Variable number of tandem repeat profiles and antimicrobial resistance patterns of Staphylococcus haemolyticus strains isolated from blood cultures in children[J]. Infection, Genetics and Evolution, 2016, 38:19-21.
    [8] PUAH SM, TAN JAMA, CHEW CH, CHUA KH. Diverse profiles of biofilm and adhesion genes in Staphylococcus aureus food strains isolated from sushi and sashimi[J]. Journal of Food Science, 2018, 83(9):2337-2342.
    [9] MA Z, WEI DD, YAN P, ZHU X, SHAN AS, BI ZP. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles[J]. Biomaterials, 2015, 52:517-530.
    [10] BUCK AK, ELMORE DE, DARLING LE. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides[J]. Future Medicinal Chemistry, 2019, 11(18):2447-2460.
    [11] 汪庆, 张瑞芬, 王亚楠, 朱宝利, 曾斌. 抗菌肽结构改造与人工智能研发策略[J]. 微生物学报, 2022, 62(11):4353-4366. WANG Q, ZHANG RF, WANG YN, ZHU BL, ZENG B. Antimicrobial peptides:structure modification and development with artificial intelligence[J]. Acta Microbiologica Sinica, 2022, 62(11):4353-4366(in Chinese).
    [12] FJELL CD, HISS JA, HANCOCK REW, SCHNEIDER G. Designing antimicrobial peptides:form follows function[J]. Nature Reviews Drug Discovery, 2012, 11(1):37-51.
    [13] RUPPE E, BARBIER F, MESLI Y, MAIGA A, COJOCARU R, BENKHALFAT M, BENCHOUK S, HASSAINE H, MAIGA I, DIALLO A, KOUMARE AK, OUATTARA K, SOUMARE S, DUFOURCQ JB, NARETH C, SARTHOU JL, ANDREMONT A, RUIMY R. Diversity of staphylococcal cassette chromosome mec structures in methicillin-resistant Staphylococcus epidermidis and Staphylococcus haemolyticus strains among outpatients from four countries[J]. Antimicrobial Agents and Chemotherapy, 2009, 53(2):442-449.
    [14] DO TQ, MOSHKANI S, CASTILLO P, ANUNTA S, POGOSYAN A, CHEUNG A, MARBOIS B, FAULL KF, ERNST W, CHIANG SM, FUJII G, CLARKE CF, FOSTER K, PORTER E. Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid[J]. Journal of Immunology (Baltimore, Md:1950), 2008, 181(6):4177-4187.
    [15] COLE AM, DEWAN P, GANZ T. Innate antimicrobial activity of nasal secretions[J]. Infection and Immunity, 1999, 67(7):3267-3275.
    [16] COLE AM, LIAO HI, STUCHLIK O, TILAN J, POHL J, GANZ T. Cationic polypeptides are required for antibacterial activity of human airway fluid[J]. The Journal of Immunology, 2002, 169(12):6985-6991.
    [17] QUINN GA, COLE AM. Suppression of innate immunity by a nasal carriage strain of Staphylococcus aureus increases its colonization on nasal epithelium[J]. Immunology, 2007, 122(1):80-89.
    [18] DAI JY, JIN RT, GAO JL, AWEYA JJ, LIN R, LI GL, YANG S. Antibacterial activity and mechanism of peptide PV-Q5 against Vibrio parahaemolyticus and Escherichia coli, derived from salt-fermented Penaeus vannamei[J]. Foods (Basel, Switzerland), 2023, 12(9):1804.
    [19] YANG S, HUANG H, AWEYA JJ, ZHENG ZH, LIU GM, ZHANG YL. PvHS9 is a novel in silico predicted antimicrobial peptide derived from hemocyanin of Penaeus vannamei[J]. Aquaculture, 2021, 530:735926.
    [20] YUAN ZJ, AWEYA JJ, LI J, WANG Z, HUANG S, ZHENG M, YANG S. Synergistic antibacterial effects of low-intensity ultrasound and peptide LCMHC against Staphylococcus aureus[J]. International Journal of Food Microbiology, 2022, 373:109713.
    [21] YANG S, DONG YT, AWEYA JJ, XIE TY, ZENG BB, ZHANG YL, LIU GM. Antimicrobial activity and acting mechanism of Tegillarca granosa hemoglobin-derived peptide (TGH1) against Vibrio parahaemolyticus[J]. Microbial Pathogenesis, 2020, 147:104302.
    [22] GANG H, YONG SH, YA TL, GUO WL. The membrane action mechanism of analogs of the antimicrobial peptide Buforin 2[J]. Peptides, 2009, 30(8):1421-1427.
    [23] ZHANG LL, ZHANG LF, XU JG. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge.)[J]. Scientific Reports, 2020, 10:8876.
    [24] ZHANG HY, LIU S, LI XD, WANG WJ, DENG LL, ZENG KF. Interaction of antimicrobial peptide ponericin W1, thanatin, and mastatopara-S with Geotrichum citri-aurantii genomic DNA[J]. Foods, 2021, 10(8):1919.
    [25] MAHLAPUU M, BJÖRN C, EKBLOM J. Antimicrobial peptides as therapeutic agents:opportunities and challenges[J]. Critical Reviews in Biotechnology, 2020, 40(7):978-992.
    [26] CIUMAC D, CAMPBELL RA, XU H, CLIFTON LA, HUGHES AV, WEBSTER JRP, LU JR. Implications of lipid monolayer charge characteristics on their selective interactions with a short antimicrobial peptide[J]. Colloids and Surfaces B:Biointerfaces, 2017, 150:308-316.
    [27] CHEN YX, GUARNIERI MT, VASIL AI, VASIL ML, MANT CT, HODGES RS. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides[J]. Antimicrobial Agents and Chemotherapy, 2007, 51(4):1398-1406.
    [28] TACHI T, EPAND RF, EPAND RM, MATSUZAKI K. Position-dependent hydrophobicity of the antimicrobial Magainin peptide affects the mode of peptide-lipid interactions and selective toxicity[J]. Biochemistry, 2002, 41(34):10723-10731.
    [29] STURROCK ED, LUBBE L, COZIER GE, SCHWAGER SLU, AROWOLO AT, ARENDSE LB, BELCHER E, ACHARYA KR. Structural basis for the C-domain-selective angiotensin-converting enzyme inhibition by bradykinin-potentiating peptide b (BPPb)[J]. The Biochemical Journal, 2019, 476(10):1553-1570.
    [30] VANDOOREN J, ITOH Y. Alpha-2-macroglobulin in inflammation, immunity and infections[J]. Frontiers in Immunology, 2021, 12:803244.
    [31] ARIMURA Y, FUNABIKI H. Structural mechanics of the alpha-2-macroglobulin transformation[J]. Journal of Molecular Biology, 2022, 434(5):167413.
    [32] THAKUR A, SHARMA A, ALAJANGI HK, JAISWAL PK, LIM YB, SINGH G, BARNWAL RP. In pursuit of next-generation therapeutics:antimicrobial peptides against superbugs, their sources, mechanism of action, nanotechnology-based delivery, and clinical applications[J]. International Journal of Biological Macromolecules, 2022, 218:135-156.
    [33] STENSEN DB, SMÅBREKKE L, OLSEN K, GRIMNES G, NIELSEN CS, ERICSON JU, SIMONSEN GS, ALMÅS B, FURBERG AS. Circulating sex-steroids and Staphylococcus aureus nasal carriage in a general male population[J]. Epidemiology and Infection, 2022, 150:e93.
    [34] FEI F, WANG T, JIANG YY, CHEN XL, MA CB, ZHOU M, WU QN, CAO P, DUAN JN, CHEN TB, BURROWS JF, WANG L. A frog-derived antimicrobial peptide as a potential anti-biofilm agent in combating Staphylococcus aureus skin infection[J]. Journal of Cellular and Molecular Medicine, 2023, 27(11):1565-1579.
    [35] BABIKIR IH, ABUGROUN EA, BILAL NE, ALGHASHAM AA, ABDALLA EE, ADAM I. The impact of cathelicidin, the human antimicrobial peptide LL-37 in urinary tract infections[J]. BMC Infectious Diseases, 2018, 18(1):17.
    [36] ZHUO HW, ZHANG X, LI MG, ZHANG Q, WANG YL. Antibacterial and anti-inflammatory properties of a novel antimicrobial peptide derived from LL-37[J]. Antibiotics, 2022, 11(6):754.
    [37] 张炜, 宁春妹, 杭柏林, 钱琨, 秦爱建, 胡建和. 抗菌肽BSN-37对大肠杆菌胞内物质泄露的影响[J]. 现代畜牧兽医, 2019(5):20-25. ZHANG W, NING CM, HANG BL, QIAN K, QIN AJ, HU JH. Effects of antimicrobial peptide BSN-37 on intracellular material leakage of Escherichia coli[J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2019(5):20-25(in Chinese).
    [38] NIE T, MENG FQ, ZHOU LB, LU FX, BIE XM, LU ZX, LU YJ. In silico development of novel chimeric lysins with highly specific inhibition against Salmonella by computer-aided design[J]. Journal of Agricultural and Food Chemistry, 2021, 69(12):3751-3760.
    [39] 王铭遥, 郑明静, 任中阳, 石林凡, 邓尚贵, 杨燊. 凡纳滨对虾抗菌肽的筛选及与DNA的结合机制[J]. 中国食品学报, 2023, 23(7):140-151. WANG MY, ZHENG MJ, REN ZY, SHI LF, DENG SG, YANG S. Antimicrobial peptides screened from Penaeus vannamei shrimp and investigation of their DNA binding mechanism[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(7):140-151(in Chinese).
    [40] YANG S, XING YF, GAO JL, JIN RT, LIN R, WENG WY, XIE YH, AWEYA JJ. Lacticaseibacillus paracasei fermentation broth identified peptide, Y2Fr, and its antibacterial activity on Vibrio parahaemolyticus[J]. Microbial Pathogenesis, 2023, 182:106260.
    [41] 陈飞龙, 刘渔珠, 彭勃, 陈咏春, 苗建银, 曹庸. 抗菌肽F1对金黄色葡萄球菌的胞内作用机制[J]. 食品科学, 2017, 38(6):36-41. CHEN FL, LIU YZ, PENG B, CHEN YC, MIAO JY, CAO Y. Intracellular mechanism of action of antimicrobial peptide F1 on Staphylococcus aureus[J]. Food Science, 2017, 38(6):36-41(in Chinese).
    [42] SUN A, HUANG Z, HE L, DONG W, TIAN Y, HUANG A, WANG X. Metabolomic analyses reveal the antibacterial properties of a novel antimicrobial peptide MOp3 from Moringa oleifera seeds against Staphylococcus aureus and its application in the infecting pasteurized milk[J]. Food Control, 2023, 150:109779.
    [43] XUAN JQ, FENG WG, WANG JY, WANG RC, ZHANG BW, BO LT, CHEN ZS, YANG H, SUN LM. Antimicrobial peptides for combating drug-resistant bacterial infections[J]. Drug Resistance Updates, 2023, 68:100954.
    [44] 杨昆, 王欢, 高洁, 李钰芳, 赵琼, 施娅楠, 黄艾祥. 抗菌肽BCp12对大肠杆菌壁膜及DNA损伤的作用机制[J]. 食品科学, 2021, 42(19):114-121. YANG K, WANG H, GAO J, LI YF, ZHAO Q, SHI YN, HUANG AX. Mechanism by which antimicrobial peptide BCp12 acts on the cell wall and membrane of Escherichia coli cells and induces DNA damage[J]. Food Science, 2021, 42(19):114-121(in Chinese).
    引证文献
引用本文

范学楠,林蓉,金日天,梁铎,邱绪健,杨燊. 一种源自人α-2-巨球蛋白的抗菌肽A2M3及其对金黄色葡萄球菌的抑菌机制[J]. 微生物学报, 2024, 64(3): 938-952

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-10-17
  • 最后修改日期:2023-12-20
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码