烟草化感自毒物质降解复合菌剂的优化及应用效果评价
作者:
基金项目:

中国烟草总公司科技重大专项项目[110202101059(XJ-08), 110202201040(XJ-11)];湖北省烟草公司科技项目(027Y2021-001)


Optimization and evaluation of a compound bacterial agent degrading autotoxins of tobacco
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    烟草(Nicotiana tabacum)长期连作导致土壤中烟草自身分泌的化感自毒物质的积累,加剧了烟草青枯病(tobacco bacterial wilt, TBW)的发生,严重威胁烟草的生产并造成了巨大的经济损失。【目的】获得对长期连作烟田青枯病具有显著防治效果的复合菌剂。【方法】利用筛选到的烟草化感自毒物质降解菌株构建复合菌剂,通过正交试验和单因素试验对菌种配比和助剂进行优化,对其在温室盆栽和连作烟田生产的应用效果进行评价。【结果】正交试验结果表明,复合菌剂中芽孢杆菌(Bacillus sp.) NO1、布鲁氏菌(Brucella sp.) NO8、芽孢杆菌(Bacillus sp.) NO9和NO10的最佳菌种配比为1:3:4:2;单因素试验结果表明最佳的载体为白炭黑;最佳润湿剂和分散剂分别为六偏磷酸钠和丁基萘磺酸钠,其最佳比例为1:1,最佳用量各为2%;稳定剂甘油的最佳浓度为1.0%。盆栽试验结果显示,复合菌剂对6种化感自毒物质的降解率和对青枯病的抑制率均达到78%以上。大田试验结果显示,100倍稀释的复合菌剂对连作15年烟田中的6种化感自毒物质具有显著的降解效果,并且能明显增加烟株的株高、茎围、腰叶长和腰叶宽,有效促进了烟草的生长发育;同时还调节了烟草根围微生物的丰度,显著抑制了狭义梭菌属1 (Clostridium_sensu_stricto_1)、劳尔氏菌属(Ralstonia)和纤维单胞属(Cellulomonas)等的相对丰度,大幅提高了戴沃斯菌属(Devosia)、黄杆菌属(Flavobacterium)和鞘氨醇单胞属(Sphingomonas)等的相对丰度。青枯病的发病率和病情指数也从处理前的92.22%和48.19%分别降低到18.15%和9.52%,防效超过了80.00%。【结论】本研究优化的复合菌剂显著降低了长期连作烟田青枯病的病情指数,可为长期连作烟田青枯病的防控提供解决方案。

    Abstract:

    [Background] Long-term continuous cropping of tobacco (Nicotiana tabacum) leads to the accumulation of autotoxins, which aggravates the incidence of tobacco bacterial wilt (TBW) caused by Ralstonia solanacearum and causing great economic losses of tobacco production. [Objective] To develop a compound bacterial agent capable of controlling TBW in the field with long-term continuous cropping of tobacco. [Methods] We formulated compound bacterial agents with screened strains capable of degrading autotoxins. Orthogonal design and single factor experiments were employed to optimize the strain ratio and the dosages of additives. The inhibition performance of the compound bacterial agent on TBW was evaluated in a greenhouse and in a field with continuous cropping of tobacco for 15 years. [Results] Orthogonal experiments showed that the optimal ratio of Bacillus sp. NO1, Brucella sp. NO8, Bacillus sp. NO9, and Bacillus sp. NO10 in the compound bacterial agent was 1:3:4:2. Single factor experiments showed that the best vector was silica. The best wetting agent and dispersant were sodium hexametaphosphate (SHMP) and sodium butylnaphthalene sulfonate (SBNS), respectively, which were optimized to be added at the dosages of 2%. The optimal concentration of the stabilizer glycerin was 1.0%. Pot experiments showed that both the degradation rate of six autotoxins and the inhibition rate of TBW by the compound bacterial agent reached over 78%. The results of the field experiment showed that the compound bacterial agent diluted by 100 folds had significant degradation effects on six autotoxins in the tobacco field with continuous cropping for 15 years. Moreover, the agent significantly increased the height, stem circumference, and waist leaf length and width of tobacco plants, thus promoting the growth and development of tobacco. In addition, the agent regulated the rhizosphere microbiota of tobacco, as manifested by the decreased relative abundance of Clostridium_sensu_stricto_1, Ralstonia, and Cellulomonas and the increased relative abundance of Devosia, Flavobacterium, and Sphingomonas. The agent decreased the incidence rate and disease index of TBW from 92.22% and 48.19% to 18.15% and 9.52%, respectively, with a control effect of 80%. [Conclusion] The optimized compound bacterial agent significantly reduces the incidence rate and disease index of TBW in the field with long-term continuous cropping of tobacco, which provides a solution for the prevention and control of TBW.

    参考文献
    [1] ALARIQI M, WEI H, CHENG JQ, SUN YW, ZHU HY, WEN TW, LI YP, WU CL, JIN SX, CAO JL. Large-scale comparative transcriptome analysis of Nicotiana tabacum response to Ralstonia solanacearum infection[J]. Plant Biotechnology Reports, 2022, 16(6): 757-775.
    [2] SEO S, GOMI K, KAKU H, ABE H, SETO H, NAKATSU S, NEYA M, KOBAYASHI M, NAKAHO K, ICHINOSE Y, MITSUHARA I, OHASHI Y. Identification of natural diterpenes that inhibit bacterial wilt disease in tobacco, tomato and Arabidopsis[J]. Plant and Cell Physiology, 2012, 53(8): 1432-1444.
    [3] 李石力. 有机酸类根系分泌物影响烟草青枯病发生的机制研究[D]. 重庆: 西南大学硕士学位论文, 2017. LI SL. The mechanism research of tobacco bacterial wilt influenced by organic acid from root exudates[D]. Chongqing: Master's Thesis of Southwest University, 2017(in Chinese).
    [4] CHEN D, ZHOU YJ, WANG M, MUJTABA MUNIR MA, LIAN JP, YU S, DAI K, YANG XE. Succession pattern in soil micro-ecology under tobacco (Nicotiana tabacum L.) continuous cropping circumstances in Yunnan Province of southwest China[J]. Frontiers in Microbiology, 2022, 12: 785110.
    [5] 李碧德. 两种生防菌(Paenibacillus polymyxaPseudomonas fluorescens)防控烟草青枯病的特性研究[D]. 重庆: 西南大学硕士学位论文, 2018. LI BD. Study on the characteristics of two biocontrol bacteria (Paenibacillus polymyxa and Pseudomonas fluorescens) in controlling tobacco bacterial wilt[D]. Chongqing: Master's Thesis of Southwest University, 2018(in Chinese).
    [6] 朱冉志. 宜宾烟区青枯病发生流行规律及综合防治技术研究[D]. 重庆: 西南大学硕士学位论文, 2020. ZHU RZ. Study on the epidemic pattern and integrated control technology of tobacco Ralstonia in Yibin[D]. Chongqing: Master's Thesis of Southwest University, 2020(in Chinese).
    [7] 章文水, 张瀛, 王雪仁, 林建麒. 不同土壤改良措施对植烟土壤理化性状及烟草青枯病的影响[J]. 中国烟草科学, 2019, 40(2): 16-22. ZHANG WS, ZHANG Y, WANG XR, LIN JQ. Effects of different soil improvement measures on physicochemical properties of soil and bacterial wilt of tobacco[J]. Chinese Tobacco Science, 2019, 40(2): 16-22(in Chinese).
    [8] 孙成成. 多粘类芽孢杆菌在烟株内定殖特性及对烟草青枯病的防效研究[D]. 重庆: 西南大学硕士学位论文, 2021. SUN CC. Study on colonization characteristics of Paenibacillus polymyxa in tobacco plants and its control effect on tobacco bacterial wilt[D]. Chongqing: Master's Thesis of Southwest University, 2021(in Chinese).
    [9] 刘晓姣. 烟草根际抑病土壤有益微生物的组学特征及对青枯病的拮抗作用研究[D]. 重庆: 西南大学博士学位论文, 2018. LIU XJ. Characteristics of tobacco rhizospheric benificial microbiome in the soil suppressive to bacterial wilt disease[D]. Chongqing: Doctoral Dissertation of Southwest University, 2018(in Chinese).
    [10] WANG Y, ZHANG W, ZHANG Z, WANG W, XU S, HE X. Isolation, identification and characterization of phenolic acid-degrading bacteria from soil[J]. Journal of Applied Microbiology, 2021, 131(1): 208-220.
    [11] WU K, YUAN SF, XUN GH, SHI W, PAN B, GUAN HL, SHEN B, SHEN QR. Root exudates from two tobacco cultivars affect colonization of Ralstonia solanacearum and the disease index[J]. European Journal of Plant Pathology, 2015, 141(4): 667-677.
    [12] LI SL, XU C, WANG J, GUO B, YANG L, CHEN JN, DING W. Cinnamic, myristic and fumaric acids in tobacco root exudates induce the infection of plants by Ralstonia solanacearum[J]. Plant and Soil, 2017, 412(1): 381-395.
    [13] LIU YX, LI X, CAI K, CAI LT, LU N, SHI JX. Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology, 2015, 93: 78-87.
    [14] MONISHA TR, ISMAILSAB M, MASARBO R, NAYAK AS, KAREGOUDAR TB. Degradation of cinnamic acid by a newly isolated bacterium Stenotrophomonas sp. TRMK2[J]. 3 Biotech, 2018, 8(8): 368.
    [15] PLAGGENBORG R, OVERHAGE J, STEINBÜCHEL A, PRIEFERT H. Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440[J]. Applied Microbiology and Biotechnology, 2003, 61(5): 528-535.
    [16] LU P, HUANG HY, SUN YX, QIANG MY, ZHU Y, CAO MJ, PENG X, YUAN B, FENG ZZ. Biodegradation of 4-hydroxybenzoic acid by Acinetobacter johnsonii FZ-5 and Klebsiella oxytoca FZ-8 under anaerobic conditions[J]. Biodegradation, 2022, 33(1): 17-31.
    [17] CHANG XH, WANG Y, SUN JG, XIANG HB, YANG Y, CHEN SW, YU J, YANG CL. Mitigation of tobacco bacteria wilt with microbial degradation of phenolic allelochemicals[J]. Scientific Reports, 2022, 12: 20716.
    [18] LI XG, DING CF, HUA K, ZHANG TL, ZHANG YN, ZHAO L, YANG YR, LIU JG, WANG XX. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biology and Biochemistry, 2014, 78: 149-159.
    [19] DENG JJ, ZHANG YL, HU JW, JIAO JG, HU F, LI HX, ZHANG SX. Autotoxicity of phthalate esters in tobacco root exudates: effects on seed germination and seedling growth[J]. Pedosphere, 2017, 27(6): 1073-1082.
    [20] DUAN YN, CHEN R, ZHANG R, JIANG WT, CHEN XS, YIN CM, MAO ZQ. Isolation, identification, and antibacterial mechanisms of Bacillus amyloliquefaciens QSB-6 and its effect on plant roots[J]. Frontiers in Microbiology, 2021, 12: 746799.
    [21] WINKELMANN T, SMALLA K, AMELUNG W, BAAB G, GRUNEWALDT-STÖCKER G, KANFRA X, MEYHÖFER R, REIM S, SCHMITZ M, VETTERLEIN D, WREDE A, ZÜHLKE S, GRUNEWALDT J, WEIß S, SCHLOTER M. Apple replant disease: causes and mitigation strategies[J]. Current Issues in Molecular Biology, 2019, 30: 89-106.
    [22] FENG ZQ, WANG YY, MA LB, XIAO YS, XIONG XY, ZENG WA, FENG K, WEI Z, DENG Y. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. NPJ Biofilms and Microbiomes, 2020, 6: 8.
    [刳帹剝 L杉樠鹊灘甬甠陚荈筁過ぇ鈠孑听删剌彉匠M, YA李嵇 X浊氬夠孄硉塎孇传譊攬 HUANG JH, YAO PW, ZHANG XQ, LI XL, YANG L. Multi-factor correlation analysis of the effect of root-promoting practices on tobacco rhizosphere microecology in growth stages[J]. Microbiological夠晒乥se条荲艣孨本茠2023匬渠怲簷到瘺砠刱匲儷申阴改朮的研究[D]. 太谷: 山西农业大学硕士学位论文, 2016. YAO XD. Preparation for wettable powder of Bacillus subtilis D-29 and its application as biocontrol agent[D]. Taigu: Master's Thesis of Shanxi Agricultural University, 2016(in Chinese).
    [25] 李舒雯. 内生短短芽孢杆菌011菌株培养优化及可湿性粉剂的研制[D]. 长沙: 湖南农业大学硕士学位论文, 2014. LI SW. Studies on medium optimization and wetting powder of endophytic breviacillus subtilis strain011[D]. Changsha: Master's Thesis of Hunan Agricultural University, 2014(in Chinese).
    [26] 郭庄园, 杨成德, 金梦军, 崔凌霄, 蔡锋锋, 敖远, 魏立娟. 枯草芽胞杆菌262XY2'可湿性粉剂的研制[J]. 中国生物防治学报, 2022, 38(2): 414-420. GUO ZY, YANG CD, JIN MJ, CUI LX, CAI FF, AO Y, WEI LJ. Development of wettable powder formulation of Bacillus subtilis 262XY2'[J]. Chinese Journal of Biological Control, 2022, 38(2): 414-420(in Chinese).
    [27] 皮静. 肉桂酸影响烟草青枯病发生的机制研究[D]. 重庆: 西南大学硕士学位论文, 2023. PI J. Study on the mechanism of cinnamic acid affecting the occurrence of tobacco bacterial wilt[D]. Chongqing: Master's Thesis of Southwest University, 2023(in Chinese).
    [28] HU Y, ZHAO W, LI XH, FENG J, LI CL, YANG XQ, GUO QQ, WANG L, CHEN SW, LI YY, YANG Y. Integrated biocontrol of tobacco bacterial wilt by antagonistic bacteria and marigold[J]. Scientific Reports, 2021, 11: 16360.
    [29] 赵思崎, 王敬敬, 杨宗政, 李晴晴, 杨榕, 赵维, 徐松, 朱丹, 黄志勇. 微生物复合菌剂的制备[J]. 微生物学通报, 2020, 47(5): 1492-1502. ZHAO SQ, WANG JJ, YANG ZZ, LI QQ, YANG R, ZHAO W, XU S, ZHU D, HUANG ZY. Preparation of microbial compound agents[J]. Microbiology China, 2020, 47(5): 1492-1502(in Chinese).
    [30] 李俊领, 马晓寒, 张豫丹, 贾玮, 许自成. 土壤微生物与烟草青枯病发生关系的研究进展[J]. 生物技术通报, 2020, 36(9): 88-99. LI JL, MA XH, ZHANG YD, JIA W, XU ZC. Research progress on the relationship between soil microorganism and tobacco bacterial wilt[J]. Biotechnology Bulletin, 2020, 36(9): 88-99(in Chinese).
    [31] 赵丹丹. 不同浓度微生物菌剂对番茄土壤理化性质及生长的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020. ZHAO DD. Effects of different concentrations of microbial agents on soil physical and chemical properties and growth of tomato[D]. Yangling: Master's Thesis of Northwest A&F University, 2020(in Chinese).
    [32] 王文丽, 金涵, 从炳成, 周蕾, 韦中, 王世梅. 复合微生物菌剂对番茄青枯病的生防效应[J]. 南京农业大学学报, 2022, 45(6): 1174-1182. WANG WL, JIN H, CONG BC, ZHOU L, WEI Z, WANG SM. Biocontrol effect of composite microbial agent on tomato bacterial wilt[J]. Journal of Nanjing Agricultural University, 2022, 45(6): 1174-1182(in Chinese).
    [33] WEI Z, YANG TJ, FRIMAN VP, XU YC, SHEN QR, JOUSSET A. Trophic network architecture of root-associated bacterial communities determines pathogen invasion and plant health[J]. Nature Communications, 2015, 6: 8413.
    [34] LI M, WEI Z, WANG JN, JOUSSET A, FRIMAN VP, XU YC, SHEN QR, POMMIER T. Facilitation promotes invasions in plant-associated microbial communities[J]. Ecology Letters, 2019, 22(1): 149-158.
    [35] DENG SW, WIPF HML, PIERROZ G, RAAB TK, KHANNA R, COLEMAN-DERR D. A plant growth-promoting microbial soil amendment dynamically alters the strawberry root bacterial microbiome[J]. Scientific Reports, 2019, 9: 17677.
    [36] 施河丽, 向必坤, 左梅, 彭五星, 尹忠春, 王瑞, 谭军. 黄腐酸与微生物菌剂协同对烟草青枯病及根际土壤细菌群落的影响[J]. 烟草科技, 2021, 54(9): 1-10. SHI HL, XIANG BK, ZUO M, PENG WX, YIN ZC, WANG R, TAN J. Synergistic effects of fulvic acid and microbial agents on tobacco bacterial wilt and bacterial community in rhizosphere soil[J]. Tobacco Science & Technology, 2021, 54(9): 1-10(in Chinese).
    [37] 吴文祥. 烟草自毒物质及其对根际土壤微生物影响的研究[D]. 福州: 福建农林大学硕士学位论文, 2010. WU WX. Studies on the autotoxic substances of tobacco and the effects of autotoxic substances on the rhizospheric microbiology[D]. Fuzhou: Master's Thesis of Fujian Agriculture and Forestry University, 2010(in Chinese).
    [38] HU QL, TAN L, GU SS,
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨文娟,余君,杨春雷,李浩,杨锦鹏,杨小琼,杨勇,向海波. 烟草化感自毒物质降解复合菌剂的优化及应用效果评价[J]. 微生物学报, 2024, 64(4): 1044-1063

复制
分享
文章指标
  • 点击次数:345
  • 下载次数: 604
  • HTML阅读次数: 373
  • 引用次数: 0
历史
  • 收稿日期:2023-07-15
  • 最后修改日期:2024-01-18
  • 录用日期:2024-01-18
  • 在线发布日期: 2024-03-30
  • 出版日期: 2024-04-04
文章二维码