艾比湖湿地芦苇根际黏细菌群落多样性及其时空分布特征
作者:
基金项目:

国家自然科学基金(32060002)


Spatial and temporal distribution characteristics and diversity of myxobacteria in the rhizosphere of Phragmites australis in Ebinur Lake wetland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究艾比湖湿地芦苇根际土壤未培养黏细菌多样性、群落结构及其时空分布特征,提高对盐碱湿地等极端环境黏细菌资源的认知,为今后开发利用极端环境黏细菌资源奠定基础,也为艾比湖湿地盐漠生态系统修复提供数据支撑。【方法】采集艾比湖湿地10个样地3个月份的芦苇根际土壤,针对16S rRNA基因的V4–V5区使用高通量测序技术研究黏细菌多样性、群落结构及其时空分布特征。【结果】艾比湖湿地黏细菌16S rRNA基因Tags数占细菌的0.22%–3.54%,7月份和样地4的多样性最高,说明属多样性与季节和样地相关。本研究共鉴定到黏球菌目的3个亚目、8个科、14个属,其中海无柄孢囊黏细菌属(Haliangium)为优势属,占10.83%–71.01%。网络共现图表明绝大多数细菌与黏细菌存在相互作用。Spearman分析表明,细菌的Shannon、Chao1和ACE指数影响着黏细菌的多样性和丰富度。冗余分析(redundancy analysis, RDA)表明,土壤无机氮(inorganic nitrogen, IN)、有机质(organic matter, OM)和水溶性镁离子(Mg2+)是影响黏细菌多样性、群落结构的主要非生物因子。【结论】艾比湖湿地黏细菌资源丰富,其多样性、群落结构受时空变化影响。生物因素(细菌)和非生物因素(土壤理化性质)共同影响着黏细菌多样性。

    Abstract:

    [Objective] To study the spatial and temporal distribution characteristics, community structure, and diversity of uncultured myxobacteria in the rhizosphere soil of Phragmites australis in the Ebinur Lake wetland, so as to enrich the knowledge of myxobacteria resources in saline-alkaline wetlands, lay a foundation for exploiting the myxobacteria resources in extreme environments, and provide data support for the restoration of saline desert ecosystems. [Methods] The rhizosphere soil samples of P. australis were collected from 10 sites in Ebinur Lake wetland in 3 months, and high-throughput sequencing was conducted for the V4–V5 region of the 16S rRNA gene to reveal the diversity and spatial and temporal distribution of myxobacteria. [Results] The abundance of myxobacteria, as indicated by the presence of 16S rRNA gene tags, ranged from 0.22% to 3.54% of the total bacteria in the Ebinur Lake wetland. The highest diversity was observed in July and at the sampling site 4, suggesting the correlations of genus diversity with both seasons and sample sites. A total of 14 genera of myxobacteria belonging to 8 families of 3 suborders were identified. Among them, Haliangium was the dominant genus, with the relative abundance of 10.83%–71.01%. Network co-occurrence diagrams showed that most of the bacteria interacted with myxobacteria. Spearman correlation analyses showed that the Shannon, Chao1, and ACE indices of bacteria influenced the diversity and richness of myxobacteria. The redundancy analysis (RDA) showed that soil inorganic nitrogen (IN), organic matter (OM), and water-soluble magnesium ions (Mg2+) were the main abiotic factors influencing the diversity and community structure of myxobacteria. [Conclusion] The Ebinur Lake wetland is rich in myxobacteria, the diversity and community structure of which present spatial and temporal variations. Biotic factors (bacteria) and abiotic factors (soil physico-chemical properties) jointly affect the diversity of myxobacteria.

    参考文献
    [1] DAWID W. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiology Reviews, 2000, 24(4): 403-427.
    [2] KAISER D, MANOIL C, DWORKIN M. Myxobacteria: cell interactions, genetics, and development[J]. Annual Review of Microbiology, 1979, 33: 595-639.
    [3] 王春玲, 吕颖颖, 姚青, 李安章, 朱红惠. 粘细菌资源挖掘与多相分类研究进展[J]. 微生物学通报, 2021, 48(8): 2870-2880. WANG CL, LÜ YY, YAO Q, LI AZ, ZHU HH. Research progress in resources mining and polyphase classification of myxobacteria[J]. Microbiology China, 2021, 48(8): 2870-2880(in Chinese).
    [4] MOHR KI. Diversity of myxobacteria-we only see the tip of the iceberg[J]. Microorganisms, 2018, 6(3): 84.
    [5] ZHOU Y, ZHANG XJ, YAO Q, ZHU HH. Both soil bacteria and soil chemical property affected the micropredator myxobacterial community: evidence from natural forest soil and greenhouse rhizosphere soil[J]. Microorganisms, 2020, 8(9): 1387.
    [6] LI SG, ZHOU XW, LI PF, HAN K, LI W, LI ZF, WU ZH, LI YZ. The existence and diversity of myxobacteria in lake mud-a previously unexplored myxobacteria habitat[J]. Environmental Microbiology Reports, 2012, 4(6): 587-595.
    [7] DAI W, LIU Y, YAO DD,WANG N, YE XF, CUI ZL, WANG H. Phylogenetic diversity of stochasticity- dominated predatory myxobacterial community drives multi-nutrient cycling in typical farmland soils[J]. Science of the Total Environment, 2023, 871: 161680.
    [8] WANG CL, LV YY, LI AZ, YAO Q, FENG GD, ZHU HH. Culture-dependent and-independent methods revealed an abundant myxobacterial community shaped by other bacteria and pH in Dinghushan acidic soils[J]. PLoS One, 2020, 15(9): e0238769.
    [9] PETTERS S, GROß V, SÖLLINGER A, PICHLER M, REINHARD A, BENGTSSON MM, URICH T. The soil microbial food web revisited: predatory myxobacteria as keystone taxa?[J]. The ISME Journal, 2021, 15(9): 2665-2675.
    [10] MASUDA Y, YAMANAKA H, XU ZX, SHIRATORI Y, AONO T, AMACHI S, SENOO K, ITOH H. Diazotrophic Anaeromyxobacter isolates from soils[J]. Applied and Environmental Microbiology, 2020, 86(16): e00956-e00920.
    [11] BEGMATOV S, DOROFEEV AG, KADNIKOV VV, BELETSKY AV, PIMENOV NV, RAVIN NV, MARDANOV AV. The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow[J]. Scientific Reports, 2022, 12: 3458.
    [12] ZHOU TZ, XIANG Y, LIU SY, MA HY, SHAO ZY, HE Q, CHAI HX. Microbial community dynamics and metagenomics reveal the potential role of unconventional functional microorganisms in nitrogen and phosphorus removal biofilm system[J]. Science of the Total Environment, 2023, 905: 167194.
    [13] 袁月, 傅德平, 吕光辉. 新疆艾比湖湿地植被优势种种间关系研究[J]. 湿地科学, 2008, 6(4): 486-491. YUAN Y, FU DP, LU GH. Inter-specific relations of the dominant plants of the wetland vegetation in the erbin lake wetland in Xinjiang Uygur Autonomous Region[J]. Wetland Science, 2008, 6(4): 486-491(in Chinese).
    [14] 李放. 土壤农化分析实验方法的改进与探索[J]. 广东蚕业, 2016, 50(6): 9-12. LI F. Improvement and exploration of experimental method for soil agrochemical analysis[J]. Guangdong Sericulture, 2016, 50(6): 9-12(in Chinese).
    [15] 连少华. 四苯硼钠比浊界限分析法测钾[J]. 福建分析测试, 2008, 17(2): 77-78. LIAN SH. Determination of potassium by sodium tetraphenylboron turbidimetric analysis[J]. Fujian Analysis & Testing, 2008, 17(2): 77-78(in Chinese).
    [16] SUN XX, ZHAO J, ZHOU X, BEI QC, XIA WW, ZHAO BZ, ZHANG JB, JIA ZJ. Salt tolerance-based niche differentiation of soil ammonia oxidizers[J]. The ISME Journal, 2022, 16(2): 412-422.
    [17] KIM SY, ZHOU X, FREEMAN C, KANG H. Changing thermal sensitivity of bacterial communities and soil enzymes in a bog peat in spring, summer and autumn[J]. Applied Soil Ecology, 2022, 173: 104382.
    [18] WANG WH, WANG N, DANG KK, DAI W, GUAN L, WANG BR, GAO JS, CUI ZL, DONG YH, WANG H. Long-term nitrogen application decreases the abundance and copy number of predatory myxobacteria and alters the myxobacterial community structure in the soil[J]. Science of the Total Environment, 2020, 708: 135114.
    [19] DAI W, WANG N, WANG WH, YE XF, CUI ZL, WANG JL, YAO DD, DONG YH, WANG H. Community profile and drivers of predatory myxobacteria under different compost manures[J]. Microorganisms, 2021, 9(11): 2193.
    [20] GARCIA R, CLAIR JL, MÜLLER R. Future directions of marine myxobacterial natural product discovery inferred from metagenomics[J]. Marine Drugs, 2018, 16(9): 303.
    [21] IIZUKA T, JOJIMA Y, FUDOU R, TOKURA M, HIRAISHI A, YAMANAKA S. Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan[J]. Systematic and Applied Microbiology, 2003, 26(2): 189-196.
    [22] 张鲜姣, 黎志坤, 谭志远, 郭俊, 朱红惠. 新疆阿克苏地区盐碱地粘细菌分离鉴定[J]. 微生物学报, 2012, 52(2): 160-168. ZHANG XJ, LI ZK, TAN ZY, GUO J, ZHU HH. Isolation and identification of myxobacteria in the salinealkaline soils of Akesu in Xinjiang[J]. Acta Microbiologica Sinica, 2012, 52(2): 160-168(in Chinese).
    [23] SYDNEY N, SWAIN MT, SO JMT, HOICZYK E, TUCKER NP, WHITWORTH DE. The genetics of prey susceptibility to myxobacterial predation: a review, including an investigation into Pseudomonas aeruginosa mutations affecting predation by Myxococcus xanthus[J]. Microbial Physiology, 2021, 31(2): 57-66.
    [24] AREND KI, SCHMIDT JJ, BENTLER T, LÜCHTEFELD C, EGGERICHS D, HEXAMER HM, KAIMER C. Myxococcus xanthus predation of Gram-positive or Gram-negative bacteria is mediated by different bacteriolytic mechanisms[J]. Applied and Environmental Microbiology, 2021, 87(5): e02382-e02320.
    [25] MORGAN AD, MacLEAN RC, HILLESLAND KL, VELICER GJ. Comparative analysis of myxococcus predation on soil bacteria[J]. Applied and Environmental Microbiology, 2010, 76(20): 6920-6927.
    [26] BAUMANN S, HERRMANN J, RAJU R, STEINMETZ H, MOHR KI, HÜTTEL S, HARMROLFS K, STADLER M, MÜLLER R. Cystobactamids: myxobacterial topoisomerase inhibitors exhibiting potent antibacterial activity[J]. Angewandte Chemie International Edition in English, 2014, 53(52): 14605-14609.
    [27] YAN ZS, JIANG HL, CAI HY, ZHOU YL, KRUMHOLZ LR. Complex interactions between the macrophyte Acorus calamus and microbial fuel cells during pyrene and benzo[a]pyrene degradation in sediments[J]. Scientific Reports, 2015, 5: 10709.
    [28] ZHAO ZH, QIN ZR, CAO JJ, MOHAMMED AAO, TOLAND H. The environmental fate of phenanthrene in paddy field system and microbial responses in rhizosphere interface: effect of water-saving patterns[J]. Chemosphere, 2021, 269: 128774.
    [29] LOUIS P, GALINSKI EA. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli[J]. Microbiology, 1997, 143(4): 1141-1149.
    [30] ZAITSEV GM, TSITKO IV, RAINEY FA, TROTSENKO YA, UOTILA JS, STACKEBRANDT E, SALKINOJA-SALONEN MS. New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov.[J]. International Journal of Systematic Bacteriology, 1998, 48(1): 151-163.
    [31] LI QQ, ZHENG YC, GUO AJ, CHEN Y, ZHANG S, LI J. Pseudokineococcus galaxeicola sp. nov., isolated from mucus of a stony coral[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(11): 5671-5675.
    [32] JIN CZ, JIN L, LIU MJ, KANG MK, PARK SH, PARK DJ, KIM CJ. Salinarimonas soli sp. nov., isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(2): 005095.
    [33] 马跃维, 丁文冕, 王跃澎, 原野, 黄艳燕, 南蓬. 马里亚纳海沟共培养细菌多样性动态变化及潜在微生物互作关系[J]. 生态学报, 2023, 43(19): 8122-8138. MA YW, DING WM, WANG YP, YUAN Y, HUANG YY, NAN P. Dynamic changes of bacterial diversity and microbial interactions in co-culture samples from the Mariana Trench[J]. Acta Ecologica Sinica, 2023, 43(19): 8122-8138(in Chinese).
    [34] 勾文君, 田源, 孔小勇, 吴菲菲, 方芳. 洋河酒窖泥细菌群落结构与菌株产酸能力分析[J]. 微生物学通报, 2020, 47(6): 1651-1661. GOU WJ, TIAN Y, KONG XY, WU FF, FANG F. Bacterial composition in pit mud of Yanghe liquor and identification of acid producing bacteria[J]. Microbiology China, 2020, 47(6): 1651-1661(in Chinese).
    [35] LU Y, ZHANG XQ, FENG LJ, YANG GF, ZHENG Z, LIU JZ, MU J. Optimization of continuous-flow solid-phase denitrification via coupling carriers in enhancing simultaneous removal of nitrogen and organics for agricultural runoff purification[J]. Biodegradation, 2017, 28(4): 275-285.
    [36] ZHOU XW, LI SG, LI W, JIANG DM, HAN K, WU ZH, LI YZ. Myxobacterial community is a predominant and highly diverse bacterial group in soil niches[J]. Environmental Microbiology Reports, 2014, 6(1): 45-56.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何波,胡文革,陈雪梅,丁成,祁晓云. 艾比湖湿地芦苇根际黏细菌群落多样性及其时空分布特征[J]. 微生物学报, 2024, 64(4): 1064-1080

复制
分享
文章指标
  • 点击次数:307
  • 下载次数: 793
  • HTML阅读次数: 425
  • 引用次数: 0
历史
  • 收稿日期:2023-09-12
  • 最后修改日期:2023-12-20
  • 录用日期:2023-12-20
  • 在线发布日期: 2024-03-30
  • 出版日期: 2024-04-04
文章二维码