一株嗜酸硫杆菌M4-422-6的分离及其全基因组测序和比较基因组学分析
作者:
基金项目:

浙江省生物工程一流学科创新基金(CX2022029, KF2022009)


Isolation, whole genome sequencing, and comparative genomic analysis of Acidithiobacillus strain M4-422-6
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】开展具有硫氧化能力的嗜酸硫杆菌属(Acidithiobacillus)的分离及其比较基因组学分析,不仅可以丰富硫氧化细菌菌种资源,而且有助于加深理解嗜酸硫杆菌的分子进化与生态适应机制。【方法】利用以硫代硫酸钠为唯一能源的培养基分离具有硫氧化能力的细菌;利用Illumina HiSeq X和Oxford Nanopore测序平台对一株嗜酸硫杆菌M4-422-6进行全基因组测序;利用相关生物信息学分析软件对原始数据进行组装和基因组注释,并与一株亲缘关系最近的菌株Igneacidithiobacillus copahuensis VAN18-1进行比较基因组学分析。【结果】分离获得一株具有硫氧化能力的嗜酸硫杆菌M4-422-6。基因组注释结果显示,菌株M4-422-6基因组由1个染色体和2个质粒组成,基因组大小为2 917 823 bp,G+C含量为58.54%,共编码2 925个蛋白。16S rRNA基因和基因组系统发育树显示,菌株M4-422-6代表嗜酸硫杆菌属的一个潜在新种。功能基因注释结果显示,菌株Acidithiobacillus sp. M4-422-6拥有与菌株特性相关的众多基因,包括硫氧化相关基因、CO2固定相关基因和耐酸相关基因。比较基因组学分析发现,虽然菌株M4-422-6与VAN18-1的亲缘关系最近,但两者仍拥有众多的差异基因,主要包括噬菌体抗性相关基因和移动元件编码基因。【结论】菌株M4-422-6代表嗜酸硫杆菌属的一个潜在新种,该菌株具有同种内菌株所不具有的特有基因,并据此推测嗜酸硫杆菌种内分化可归因于对特定生态位的适应。

    Abstract:

    [Objective] The isolation and comparative genomic analysis of Acidithiobacillus capable of oxidizing sulfur will enrich our knowledge about not only sulfur-oxidizing bacterial strains but also the molecular evolution and ecological adaptation mechanisms of Acidithiobacillus.[Methods] The medium with sodium thiosulfate as the sole energy source was used to isolate the strain capable of oxidizing sulfur, which was followed by Illumina HiSeq X and Oxford Nanopore sequencing of strain M4-422-6. Bioinformatics tools were used for sequence assembly and gene annotation, and the comparative genomic analysis was performed with Ignacidithiobacillus copahuensis VAN18-1. [Results] An Acidithiobacillus strain M4-422-6 capable of oxidizing sulfur was isolated. The genome annotation results showed that the genome of strain M4-422-6 consisted of one chromosome and two plasmids, with a length of 2 917 823 bp and G+C content of 58.54%, encoding a total of 2 925 proteins. The 16S rRNA gene sequence and the phylogenetic tree built by the type (strain) genome server (TYGS) revealed that strain M4-422-6 represented a novel species of Acidithiobacillus. Functional gene annotation showed that strain M4-422-6 carried numerous genes involved in sulfur oxidation, CO2 fixation, and acid resistance. The comparative genomic analysis revealed that although strain M4-422-6 had the closest genetic relationship with Ignacidithiobacillus copahuensis VAN18-1, and the two strains possessed numerous different genes, which were mainly involved in phage resistance and mobile element encoding. [Conclusion] Strain M4-422-6 represents a novel species of Acidithiobacillus and has unique genes that are not present in strains of the same species. Therefore, we hypothesize that the intra-species differentiation of Acidithiobacillus can be attributed to adaptation to specific niches.

    参考文献
    [1] QUATRINI R, JOHNSON DB. Acidithiobacillus ferrooxidans[J]. Trends in Microbiology, 2019, 27(3): 282-283.
    [2] JONES DS, ALBRECHT HL, DAWSON KS, SCHAPERDOTH I, FREEMAN KH, PI Y, PEARSON A, MACALADY JL. Community genomic analysis of an extremely acidophilic sulfur-oxidizing biofilm[J]. The ISME Journal, 2012, 6(1): 158-170.
    [3] PATHAK A, DASTIDAR MG, SREEKRISHNAN TR. Bioleaching of heavy metals from sewage sludge: a review[J]. Journal of Environmental Management, 2009, 90(8): 2343-2353.
    [4] VALDéS J, PEDROSO I, QUATRINI R, HOLMES DS. Comparative genome analysis of Acidithiobacillusferrooxidans,A.thiooxidansandA.caldus: insights into their metabolism and ecophysiology[J]. Hydrometallurgy, 2008, 94(1): 180-184.
    [5] VERA M, SCHIPPERS A, HEDRICH S, SAND W. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation-part A[J]. Applied Microbiology and Biotechnology, 2022, 106(21): 6933-6952.
    [6] WANG R, LIN JQ, LIU XM, PANG X, ZHANG CJ, YANG CL, GAO XY, LIN CM, LI YQ, LI Y, LIN JQ, CHEN LX. Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp.[J]. Frontiers in Microbiology, 2019, 9: 3290.
    [7] ESPOSTI MD. On the evolution of cytochrome oxidases consuming oxygen[J]. Biochimica et Biophysica acta Bioenergetics, 2020, 1861(12): 148304.
    [8] JOHNSON DB, QUATRINI R. Acidophile microbiology in space and time[J]. Current Issues in Molecular Biology, 2020, 39: 63-76.
    [9] NI YQ, HE KY, BAO JT, YANG Y, WAN DS, LI HY. Genomic and phenotypic heterogeneity of Acidithiobacillus spp. strains isolated from diverse habitats in China[J]. FEMS Microbiology Ecology, 2008, 64(2): 248-259.
    [10] JONES DS, SCHAPERDOTH I, MACALADY JL. Biogeography of sulfur-oxidizing Acidithiobacillus populations in extremely acidic cave biofilms[J]. The ISME Journal, 2016, 10(12): 2879-2891.
    [11] AMOURIC A, BROCHIER-ARMANET C, JOHNSON DB, BONNEFOY V, HALLBERG KB. Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways[J]. Microbiology, 2011, 157(1): 111-122.
    [12] Nuñez H, Moya-Beltrán A, Covarrubias PC, Issotta F, Cárdenas JP, González M, Atavales J, Acuña LG, Johnson DB, Quatrini R. Molecular systematics of the genus Acidithiobacillus: insights into the phylogenetic structure and diversification of the taxon[J]. Frontiers in Microbiology, 2017, 8: 30.
    [13] WAKSMAN SA, JOFFE JS. Microörganisms concerned in the oxidation of sulfur in the soil: II. Thiobacillusthiooxidans, a new sulfur-oxidizing organism isolated from the soil[J]. Journal of Bacteriology, 1922, 7(2): 239-256.
    [14] BRYANT RD, MCGROARTY KM, COSTERTON JW, LAISHLEY EJ. Isolation and characterization of a new acidophilic Thiobacillus species (T.albertis)[J]. Canadian Journal of Microbiology, 1983, 29(9): 1159-1170.
    [15] HALLBERG KB, LINDSTR MöEB. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile[J]. Microbiology, 1994, 140(12): 3451-3456.
    [16] Falagán C, Moya-Beltrán A, Castro M, Quatrini R, Johnson DB. Acidithiobacillussulfuriphilus sp. nov.: an extremely acidophilic sulfur-oxidizing chemolithotroph isolated from a neutral pH environment[J]. International Journal of Systematic and Evolutionary Microbiology, 2019, 69(9): 2907-2913.
    [17] TEMPLE KL, COLMER AR. The autotrophic oxidation of iron by a new bacterium, thiobacillus ferrooxidans[J]. Journal of Bacteriology, 1951, 62(5): 605-611.
    [18] HALLBERGáKB, GONZ LEZ-TORIL E, JOHNSON DB. Acidithiobacillusferrivorans sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments[J]. Extremophiles, 2010, 14(1): 9-19.
    [19] HEDRICH S, JOHNSON DB. Acidithiobacillusferridurans sp. nov., an acidophilic iron-, sulfur- and hydrogen-metabolizing chemolithotrophicGammaproteobacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63(11): 4018-4025.
    [20] FALAGáN C, JOHNSON DB. Acidithiobacillusferriphilus sp. nov., a facultatively anaerobic iron- and sulfur-metabolizing extreme acidophile[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(1): 206-211.
    [21] NORRIS PR, FALAGáN C, MOYA-BELTRáN A, CASTRO M, QUATRINI R, JOHNSON DB. Acidithiobacillusferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph[J]. Extremophiles, 2020, 24(2): 329-337.
    [22] HEDRICH S, JOHNSON DB. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria[J]. FEMS Microbiology Letters, 2013, 349(1): 40-45.
    [23] MOYA-BELTRáN A, BEARD S, ROJAS-VILLALOBOS C, ISSOTTA F, GALLARDO Y, ULLOA R, GIAVENO A, DEGLI ESPOSTI M, JOHNSON DB, QUATRINI R. Genomic evolution of the class Acidithiobacillia: deep-branching Proteobacteria living in extreme acidic conditions[J]. The ISME Journal, 2021, 15: 3221-3238.
    [24] Beard S, Ossandon FJ, Rawlings DE, Quatrini R. The flexible genome of acidophilic prokaryotes[J]. Current Issues in Molecular Biology, 2021, 40: 231-266.
    [25] WEISBURG WG, BARNS SM, PELLETIER DA, LANE DJ. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2): 697-703.
    [26] 陈婷, 陈秀暖, 任娜, 薛泽豪, 朱四东, 杨季芳, 陈吉刚. 西太平洋多金属结核区12个站位沉积物中可培养潜在腐殖质转化菌的多样性[J]. 微生物学通报, 2022, 49(5): 1541-1552. CHEN T, CHEN XN, REN N, XUE ZH, ZHU SD, YANG JF, CHEN JG. Diversity of potential culturable humic substance-transforming bacteria in sediments from 12 stations in the western Pacific polymetallic nodule province[J]. Microbiology China, 2022, 49(5): 1541-1552(in Chinese).
    [27] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617.
    [28] KUMAR S, STECHER G, TAMURA K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular Biology and Evolution, 2016, 33(7): 1870-1874.
    [29] 王惠祥, 姜理英, 吴晓薇, 陈建孟. 硫氧化细菌的分离鉴定及降解特性[J]. 应用与环境生物学报, 2011, 17(5): 706-710. WANG HX, JIANG LY, WU XW, CHEN JM. Isolation, identification and degradation characteristics of a sulfide-oxidizing bacterium[J]. Chinese Journal of Applied and Environmental Biology, 2011, 17(5): 706-710(in Chinese).
    [30] 彭安安. 嗜酸硫氧化细菌元素硫活化氧化机制研究[D].长沙: 中南大学博士学位论文, 2014. Peng AA. Study on the sulfur activation and oxidation mechanism of acidophilic sulfur-oxidizing bacteria[D]. Changsha: Doctoral Dissertation of Central South University, 2014(in Chinese).
    [31] 刘阳. 海洋硫氧化菌Thioclava分类鉴定及其硫氧化机制研究[D]. 哈尔滨: 哈尔滨工业大学博士学位论文, 2020. LIU Y. Classification, identification and sulfur oxidation mechanisms of marine sulfur-oxidizing bacterium Thioclava[D]. Harbin: Doctoral Dissertation ofEngineering of Harbin Institute of Technology, 2020(in Chinese).
    [32] YOON SH, HA SM, LIM J, KWON S, CHUN J. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie Van Leeuwenhoek, 2017, 110(10): 1281-1286.
    [33] Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions[J]. BMC Bioinformatics. 2013, 14: 60.
    [34] Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes[J]. Nucleic Acids Research, 2022, 50(1): 801-807.
    [35] González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative genomics sheds light on evolutionary forces shaping the Acidithiobacillia class acidophilic lifestyle[J]. Frontiers in Microbiology, 2022, 12: 822229.
    [36] Gogarten JP, Doolittle WF, Lawrence JG. Prokaryotic evolution in light of gene transfer[J]. Molecular Biology Evolution, 2002, 19(12): 2226-38.
    [37] WAACK S, KELLER O, ASPER R, BRODAG T, DAMM C, FRICKE WF, SUROVCIK K, MEINICKE P, MERKL R. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models[J]. BMC Bioinformatics, 2006, 7: 142.
    [38] COLSTON SM, FULLMER MS, BEKA L, LAMY B, GOGARTEN JP, GRAF J. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case[J]. mBio, 2014, 5(6): e02136.
    [39] Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, Rooney AP, Yi H, Xu XW, de Meyer S, Trujillo ME. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1): 461-466.
    [40] CHEN ZW, LIU YY, WU JF, SHE Q, JIANG CY, LIU SJ. Novel bacterial sulfur oxygenase reductases from bioreactors treating gold-bearing concentrates[J]. Applied Microbiology and Biotechnology, 2007, 74(3): 688-698.
    [41] Yin H, Zhang X, Li X, He Z, Liang Y, Guo X, Hu Q, Xiao Y, Cong J, Ma L, Niu J, Liu X. Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillusthiooxidans[J]. BMC Microbiology, 2014, 14: 179.
    [42] Wu W, Pang X, Lin J, Liu X, Wang R, Lin J, Chen L. Discovery of a new subgroup of sulfur dioxygenases and characterization of sulfur dioxygenases in the sulfur metabolic network of Acidithiobacilluscaldus[J]. PLoS One, 2017, 12(9): e0183668.
    [43] Acuña LG, Cárdenas JP, Covarrubias PC, Haristoy JJ, Flores R, Nuñez H, Riadi G, Shmaryahu A, Valdés J, Dopson M, Rawlings DE, Banfield JF, Holmes DS, Quatrini R. Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacilluscaldus[J]. PLoS One, 2013, 8(11): e78237.
    [44] BUSTAMANTE P, COVARRUBIAS PC, LEVICÁN G, KATZ A, TAPIA P, HOLMES D, QUATRINI R, ORELLANA O. ICE Afe 1, an actively excising genetic element from the biomining bacterium Acidithiobacillusferrooxidans[J]. Journal of Molecular Microbiology and Biotechnology, 2012, 22(6): 399-407.
    [45] COVARRUBIAS PC, MOYA-BELTRÁN A, ATAVALES J, MOYA-FLORES F, TAPIA PS, ACUÑA LG, SPINELLI S, QUATRINI R. Occurrence, integrity and functionality of AcaML1-like viruses infecting extreme acidophiles of the Acidithiobacillus species complex[J]. Research in Microbiology, 2018, 169(10): 628-637.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

俞添天,徐莹,金佳凡,朱四东,杨季芳,陈吉刚. 一株嗜酸硫杆菌M4-422-6的分离及其全基因组测序和比较基因组学分析[J]. 微生物学报, 2024, 64(4): 1274-1288

复制
分享
文章指标
  • 点击次数:415
  • 下载次数: 677
  • HTML阅读次数: 471
  • 引用次数: 0
历史
  • 收稿日期:2023-11-14
  • 最后修改日期:2024-01-24
  • 录用日期:2024-01-24
  • 在线发布日期: 2024-03-30
  • 出版日期: 2024-04-04
文章二维码