鹤山地区健康和失管茶园土壤真菌群落结构差异及其驱动因子分析
作者:
基金项目:

广东省科技计划(2021B1212050022);省级乡村振兴战略专项资金种业振兴项目(2022-440000-43010104-9463);广东特支计划(2021JC06N628)


Differences of soil fungal community structure and driving factors between healthy and mismanaging tea plantations in Heshan of southern China
Author:
  • WANG Xing

    WANG Xing

    Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China;State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DONG Yijie

    DONG Yijie

    State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • FENG Guangda

    FENG Guangda

    State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAO Qing

    YAO Qing

    Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Chenjian

    LIU Chenjian

    Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Honghui

    ZHU Honghui

    State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [45]
  • |
  • 相似文献 [14]
  • | | |
  • 文章评论
    摘要:

    【目的】以鹤山红茶产地生态系统为研究对象,探究健康和失管茶园中土壤真菌群落结构的差异以及土壤理化性质对真菌群落结构的影响。【方法】在鹤山地区健康茶园和管理不善的失管茶园中采集了49份根围土壤样品,采用高通量测序技术分析茶树根围土壤真菌的群落组成;利用冗余分析研究土壤理化性质对真菌群落结构的影响;进一步通过wilcoxon秩和检验法分析健康和失管茶园中差异的真菌类群;通过FUNGuild软件对土壤真菌的功能类群进行预测。【结果】研究发现担子菌门、被孢霉门和子囊菌门是茶树根围土壤的优势门;失管茶园中担子菌门的相对丰度显著升高,而被孢霉门则显著降低;根围土壤真菌的丰富度指数、Chao1指数和ACE指数显著低于健康茶园。研究发现总氮、总磷、有效磷、有机质和水解性氮是真菌β多样性差异的主要环境驱动因子;pH、总磷、交换性镁、交换性钙、有效磷和有效钾等与真菌类群间存在显著的相关性。健康和失管茶园中共有的核心操作分类单元(operational taxonomic units, OTUs)是10个,失管茶园中核心类群的相对丰度降低,而中间类群和稀有类群的相对丰度则增加。健康茶园根围土壤核心OTUs中出现了茶轮斑病菌茶拟盘多毛孢和国槐根腐病菌角化可塑镰孢菌(Fusarium keratoplasticum),失管茶园根围土壤核心OTUs中生防菌螺旋木霉(Trichoderma spirale)、深绿木霉(T. atroviride)的丰度显著较高。失管茶园中病原营养型、病原-腐生-共生过渡型和共生营养型真菌的相对丰度明显增加;而腐生-共生过渡型的真菌则显著降低。【结论】本研究揭示了鹤山地区茶园管理方式与真菌群落结构和土壤理化性质间的关系,为鹤山红茶的病害防治及生防菌筛选指明了方向。

    Abstract:

    [Objective] This study aims to investigate the soil fungal community structure in the tea plantations of Heshan and explore the relationship between fungal community and soil physicochemical properties. [Methods] We employed high-throughput sequencing to analyze the soil fungal community composition of 49 rhizosphere soil samples collected from healthy and mismanaging tea plantations in Heshan. The redundancy analysis (RDA) was performed to analyze the effects of soil physicochemical properties on the fungal community structure. The pairwise Wilcoxon signed-rank test was performed to compare the fungal taxa between the two kinds of tea plantations. FUNGuild was used to predict the soil fungal functions. [Results] Basidiomycota, Mortierellomycota, and Ascomycota were the three dominant phyla in the rhizosphere soil of tea plantations in Heshan. The mismanagement of tea plantations increased the relative abundance of Basidiomycota, but significantly decreased the relative abundance of Mortierellomycota. The fungal richness, Chao1 index, and ACE index were significantly lower in the mismanaging tea plantation than in the healthy tea plantation. The total nitrogen, total phosphorus, available phosphorus, organic matter, and available nitrogen were the primary driving factors for the differences of soil fungal β diversity. The soil pH, total phosphorus, exchangeable Ca2+ and Mg2+, available phosphorus, and available potassium were significantly correlated with the fungal taxa. Compared with the healthy tea plantation, the mismanaging tea plantation showed decreased relative abundance of core fungal taxa but increased relative abundance of medium and rare taxa. Ten of OTUs was common between healthy and mismanaging tea plantations. The pathogens causing tea gray blight, i.e., Pseudopestalotiopsis theae and Fusarium keratoplasticum, were identified in the healthy tea plantation. The relative abundance of biocontrol fungi, Trichoderma spirale and T. atroviride, significantly increased in the mismanaging tea plantation. The mismanaging tea plantation demonstrated increased relative abundance of pathotrophic, pathotrophic-saprotrophic-symbiotrophic, and symbiotrophic fungi but decreased relative abundance of saprotrophic-symbiotrophic fungi. [Conclusion] We elucidated the relationship of management mode with fungal community composition and soil physicochemical properties, providing the insights into the prevention and control of pathogens infecting black tea and the screening of biocontrol fungi in Heshan.

    参考文献
    [1] 王新超, 王璐, 郝心愿, 李娜娜, 黄建燕, 丁长庆, 杨亚军. 中国茶树遗传育种发展、创新之回顾与展望[J]. 华中农业大学学报, 2022, 41(5): 1-8. WANG XC, WANG L, HAO XY, LI NN, HUANG JY, DING CQ, YANG YJ. Retrospect and prospect of development and innovation of tea plant genetics and breeding in China[J]. Journal of Huazhong Agricultural University, 2022, 41(5): 1-8 (in Chinese).
    [2] 唐俊贤, 王培娟, 俄有浩, 马玉平, 邬定荣, 霍治国. 中国大陆茶树种植气候适宜性区划[J]. 应用气象学报, 2021, 32(4): 397-407. TANG JX, WANG PJ, E YH, MA YP, WU DR, HUO ZG. Climatic suitability zoning of tea planting in mainland China[J]. Journal of Applied Meteorological Science, 2021, 32(4): 397-407 (in Chinese).
    [3] 吴成建, 叶建华, 张健, 张雯婧, 于学领, 苏峰. 生态茶园管理中耕作机应用的实践与探索[J]. 中国茶叶, 2021, 43(3): 53-56. WU CJ, YE JH, ZHANG J, ZHANG WJ, YU XL, SU F. Practice and exploration of tillage machine in ecological tea garden management[J]. China Tea, 2021, 43(3): 53-56 (in Chinese).
    [4] 朱玲, 赵仪, 严学兵, 孙盛楠. 茶园管理方式对土壤微生物群落影响的研究进展[J]. 土壤通报, 2023, 54(1): 245-252. ZHU L, ZHAO Y, YAN XB, SUN SN. Reasearch progress on effects of tea plantation managements on soil microbial community[J]. Chinese Journal of Soil Science, 2023, 54(1): 245-252 (in Chinese).
    [5] BAI YC, LI BX, XU CY, RAZA M, WANG Q, WANG QZ, FU YN, HU JY, IMOULAN A, HUSSAIN M, XU YJ. Intercropping walnut and tea: effects on soil nutrients, enzyme activity, and microbial communities[J]. Frontiers in Microbiology, 2022, 13: 852342.
    [6] SUN LT, DONG X, WANG Y, MAKER G, AGARWAL M, DING ZT. Tea-soybean intercropping improves tea quality and nutrition uptake by inducing changes of rhizosphere bacterial communities[J]. Microorganisms, 2022, 10(11): 2149.
    [7] 谷鹏, 焦燕, 杨文柱, 温慧洋, 白曙光, 杨洁. 不同灌溉方式对农田土壤微生物丰度及通透性的影响[J]. 灌溉排水学报, 2018, 37(1): 21-27. GU P, JIAO Y, YANG WZ, WEN HY, BAI SG, YANG J. Effects of different irrigation methods on soil microbial abundance and permeability in farmland[J]. Journal of Irrigation and Drainage, 2018, 37(1): 21-27 (in Chinese).
    [8] 陈妍曦, 孙彬妹, 刘少群, 林晓强, 肖熙, 郑鹏. 茶园不同灌溉方式的综合效果分析[J]. 茶叶学报, 2020, 61(2): 79-83. CHEN YX, SUN BM, LIU SQ, LIN XQ, XIAO X, ZHENG P. A comprehensive analysis on irrigation for tea plantation[J]. Acta Tea Sinica, 2020, 61(2): 79-83 (in Chinese).
    [9] 李文. 灌溉方式对设施土壤微生物学特性的影响[D]. 沈阳: 沈阳农业大学硕士学位论文, 2017. Li W. Impact of irrigation management on greenhouse soil microbial characteristics[D]. Shenyang: Master’s Thesis of Shenyang Agricultural University, 2017 (in Chinese).
    [10] 季凌飞, 倪康, 马立锋, 陈兆杰, 赵远艳, 阮建云, 郭世伟. 不同施肥方式对酸性茶园土壤真菌群落的影响[J]. 生态学报, 2018, 38(22): 8158-8166. JI LF, NI K, MA LF, CHEN ZJ, ZHAO YY, RUAN JY, GUO SW. Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil[J]. Acta Ecologica Sinica, 2018, 38(22): 8158-8166 (in Chinese).
    [11] 蒋宇航, 林生, 林伟伟, 陈婷, Yasir Arafat, 位小丫, 林文雄. 不同肥料对退化茶园根际土壤微生物代谢活性和群落结构的影响[J]. 生态学杂志, 2017, 36(10): 2894-2902. JIANG YH, LIN S, LIN WW, CHEN T, YASIR A, WEI XY, LIN WX. Effects of different fertilizer applications on microbial metabolic activity and community structure in tea rhizosphere soil[J]. Chinese Journal of Ecology, 2017, 36(10): 2894-2902 (in Chinese).
    [12] 万人源. 不同杂草管理方式茶园茶树根际与根内生微生物群落结构与功能的研究[D]. 昆明: 云南农业大学硕士学位论文, 2023. WAN RY. Study on the structure and function of microbial communities in the rhizosphere and root endophytes of tea plants in different weed management methods in tea gardens[D]. Kunming: Master’s Thesis of Yunnan Agricultural University, 2023 (in Chinese).
    [13] 林威鹏, 郜礼阳, 凌彩金, 赖榕辉, 陈汉林, 王捷才, 周巧仪, 刘淑媚. 广东省茶叶主产区杂草防控技术及成本研究[J]. 广东农业科学, 2019, 46(12): 147-152. LIN WP, GAO LY, LING CJ, LAI RH, CHEN HL, WANG JC, ZHOU QY, LIU SM. Study on technology and cost of weed control in main tea producing areas of Guangdong Province[J]. Guangdong Agricultural Sciences, 2019, 46(12): 147-152 (in Chinese).
    [14] 生态环境部. 土壤pH值测定电位法: HJ 962—2018[S]. 北京: 中国环境科学出版社, 2018. Ministry of Ecology and Environment of the People’s Republic of China. Soil-determination of pH-potentiometry: HJ 962—2018[S]. Beijing: China Environmental Science Press, 2018 (in Chinese).
    [15] 国家林业局. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社, 2016. The State Forestry Administration of the People’s Republic of China. Potassium determination methods of forest soils: LY/T 1234—2015[S]. Beijing: Standards Press of China, 2016 (in Chinese).
    [16] 中华人民共和国农业部. 土壤检测第13部分: 土壤交换性钙和镁的测定: NY/T 1121.13—2006[S]. 北京: 中国农业出版社, 2006. Ministry of Agriculture of the People’s Republic of China. Soil testing Part 13: Method for determination of soil exchangeable calcium and magnesium: NY/T 1121.13—2006[S]. Beijing: Agriculture Press of China, 2006 (in Chinese).
    [17] 中华人民共和国农业部. 土壤检测第24部分: 土壤全氮的测定自动定氮仪法: NY/T 1121.24-2012[S]. 北京: 中国农业出版社, 2012. Ministry of Agriculture of the People’s Republic of China. Soil testing Part 24: determination of total nitrogen in soil-automatic Kjeeldahl apparatus method: NY/T 1121.24-2012[S]. Beijing: Agriculture Press of China, 2012 (in Chinese).
    [18] 国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015. The State Forestry Administration of the People’s Republic of China. Nitrogen determination methods of forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [19] 中华人民共和国农业部. 土壤检测第6部分: 土壤有机质的测定: NY/T 1121.6—2006[S]. 北京: 中国农业出版社, 2006. Ministry of Agriculture of the People’s Republic of China. Soil testing Part 6: Method for determination of soil organic matter: NY/T 1121.6—2006[S]. Beijing: Agriculture Press of China, 2006 (in Chinese).
    [20] 国家林业局. 森林土壤磷的测定: LY/T 1232-2015[S]. 北京: 中国标准出版社, 2016. The State Forestry Administration of the People’s Republic of China. Phosphorus determination methods of forest soils: LY/T 1232-2015[S]. Beijing: Standards Press of China, 2016 (in Chinese).
    [21] 向信, 殷恒霞, 朱肇宇, 邱庆辉, 柳宇睿, 樊嘉凯, 邓佳文, 张得钧, 张本印. 青藏高原极端生境细菌多样性差异及影响因素[J]. 微生物学报, 2023, 63(8): 3235-3251. XIANG X, YIN HX, ZHU ZY, QIU QH, LIU YR, FAN JK, DENG JW, ZHANG DJ, ZHANG BY. Differences and influencing factors of bacterial composition and diversity in seven typical extreme habitats on the Qinghai-Tibetan Plateau[J]. Acta Microbiologica Sinica, 2023, 63(8): 3235-3251.
    [22] ZHANG Z, GE SB, FAN LC, GUO S, HU Q, AHAMMED GJ, YAN P, ZHANG LP, LI ZZ, ZHANG JY, FU JY, HAN WY, LI X. Diversity in rhizospheric microbial communities in tea varieties at different locations and tapping potential beneficial microorganisms[J]. Frontiers in Microbiology, 2022, 13: 1027444.
    [23] BOKULICH NA, KAEHLER BD, RIDEOUT JR, DILLON M, BOLYEN E, KNIGHT R, HUTTLEY GA, GREGORY CAPORASO J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1): 90.
    [24] BAG S, MONDAL A, BANIK A. Exploring tea (Camellia sinensis) microbiome: insights into the functional characteristics and their impact on tea growth promotion[J]. Microbiological Research, 2022, 254: 126890.
    [25] 万人源, 马会杰, 蒋宾, 杨丽冉, 周大鹏, 和明珠, 杨广容. 茶园土壤真菌群落组成及影响因素研究[J]. 中国农学通报, 2021, 37(33): 88-97. WAN RY, MA HJ, JIANG B, YANG LR, ZHOU DP, HE MZ, YANG GR. The fungi community structure and influencing factors in tea gardens soil[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 88-97 (in Chinese).
    [26] 浦滇, 罗义菊, 陈洪宇, 石明, 蓝增全. 长期种植云南大叶种茶对土壤真菌多样性的影响[J]. 应用与环境生物学报, 2023, 29(2): 440-448. PU D, LUO YJ, CHEN HY, SHI M, LAN ZQ. Effects of long-term cultivation of Yunnan large-leaf tea (Camellia sinensis var. assamica) on soil fungal community characteristics[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 440-448 (in Chinese).
    [27] LI TQ, LI DB, CHEN XG, GÉRARD F, LI MG, WU JP, GAO JY. Compartments of roots and mature leaves are key hubs in the connectivity of tea-plant mycobiomes and are influenced by environmental factors and host age[J]. Science of the Total Environment, 2023, 893: 164827.
    [28] LIU SB, HE FK, KUZYAKOV Y, XIAO HX, HOANG DTT, PU SY, RAZAVI BS. Nutrients in the rhizosphere: a meta-analysis of content, availability, and influencing factors[J]. Science of the Total Environment, 2022, 826: 153908.
    [29] GLASSMAN SI, WANG IJ, BRUNS TD. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales[J]. Molecular Ecology, 2017, 26(24): 6960-6973.
    [30] LEMANCEAU P, BLOUIN M, MULLER D, MOËNNE-LOCCOZ Y. Let the core microbiota be functional[J]. Trends in Plant Science, 2017, 22(7): 583-595.
    [31] VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, Le VAN A, DUFRESNE A. The importance of the microbiome of the plant holobiont[J]. The New Phytologist, 2015, 206(4): 1196-1206.
    [32] 卢声洁, 赵兴丽, 罗林丽, 程宇豪, 张金峰, 李帅, 周玉锋. 一株茶轮斑病病原菌的分离鉴定及致病力[J]. 茶叶通讯, 2021, 48(2): 253-258. LU SJ, ZHAO XL, LUO LL, CHENG YH, ZHANG JF, LI S, ZHOU YF. Isolation, identification of a pathogen of tea gray blight and its pathogenicity[J]. Journal of Tea Communication, 2021, 48(2): 253-258 (in Chinese).
    [33] 李冬雪, 赵晓珍, 王勇, 练珊珊, 任亚峰, 陈卓. 贵州惠水县茶轮斑病病原菌的鉴定[J]. 热带作物学报, 2018, 39(9): 1827-1833. LI DX, ZHAO XZ, WANG Y, LIAN SS, REN YF, CHEN Z. Identification of the pathogen causing tea gray blight disease in Huishui County, Guizhou Province[J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1827-1833 (in Chinese).
    [34] 安小丽, 武娴, 任亚峰, 尹桥秀, 王雪, 李冬雪, 江仕龙, 王德炉, 陈卓. 茶叶斑病病原菌茶拟盘多毛孢(Pseudopestalotiopsis theae)鉴定及生物学特性[J]. 中国植保导刊, 2020, 40(1): 12-19, 47. AN XL, WU X, REN YF, YIN QX, WANG X, LI DX, JIANG SL, WANG DL, CHEN Z. Identification and biological characteristics of Pseudopestalotiopsis theae, an important pathogenic fungus causing tea leaf spot[J]. China Plant Protection, 2020, 40(1): 12-19, 47 (in Chinese).
    [35] 游雨欣, 谢勇啸, 张致宁, 江凌晗, 关雄, 潘晓鸿. 纳米抑菌材料的合成及对茶拟盘多毛孢的抑制活性[J]. 农药学学报, 2020, 22(6): 1069-1075. YOU YX, XIE YX, ZHANG ZN, JIANG LH, GUAN X, PAN XH. Synthesis of nano-fungistatic materials and their inhibitory activity to Pseudopestalotiopsis theae[J]. Chinese Journal of Pesticide Science, 2020, 22(6): 1069-1075 (in Chinese).
    [36] PANDEY AK, SINNIAH GD, BABU A, TANTI A. How the global tea industry copes with fungal diseases-challenges and opportunities[J]. Plant Disease, 2021, 105(7): 1868-1879.
    [37] 王峰, 陈玉真, 吴志丹, 尤志明, 余文权, 俞晓敏, 杨贞标. 有机管理模式对茶园土壤真菌群落结构及功能的影响[J]. 茶叶科学, 2022, 42(5): 672-688. WANG F, CHEN YZ, WU ZD, YOU ZM, YU WQ, YU XM, YANG ZB. Effects of organic management mode on soil fungal community structure and functions in tea gardens[J]. Journal of Tea Science, 2022, 42(5): 672-688 (in Chinese).
    [38] 王桂清, 曾路, 马迪, 张赛, 荆晓东. 国槐根茎腐烂病病原菌的形态与分子鉴定[J]. 东北林业大学学报, 2017, 45(5): 106-110. WANG GQ, ZENG L, MA D, ZHANG S, JING XD. Morphological and molecular identification of the Fusarium pathogen causing root rot disease of Chinese scholartree[J]. Journal of Northeast Forestry University, 2017, 45(5): 106-110 (in Chinese).
    [39] 赖传雅, 赖传碧. 茶扦插苗根腐性苗枯病: Ⅱ.茶扦插苗茄病镰孢菌在中国首次报道[J]. 吉林农业大学学报, 1998, 20(S1): 136. LAI CY, LAI CB. The blight of root tea cutting seedling: Ⅱ. The first report of Fusarium solani on tea cutting seedling in China[J]. Journal of Jilin Agricultural University, 1998, 20(S1): 136 (in Chinese).
    [40] 刘三宝. 油茶根腐病病原学初步研究[D]. 武汉: 华中农业大学硕士学位论文, 2011. LIU SB. A preliminary study of root pathogen on camellia[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2011 (in Chinese).
    [41] BLACKWOOD CB, WALDROP MP, ZAK DR, SINSABAUGH RL. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition[J]. Environmental Microbiology, 2007, 9(5): 1306-1316.
    [42] YELLE DJ, RALPH J, LU FC, HAMMEL KE. Evidence for cleavage of lignin by a brown rot basidiomycete[J]. Environmental Microbiology, 2008, 10(7): 1844-1849.
    [43] 宁琪, 陈林, 李芳, 张丛志, 马东豪, 蔡泽江, 张佳宝. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206-217. NING Q, CHEN L, LI F, ZHANG CZ, MA DH, CAI ZJ, ZHANG JB. Effects of Mortierella on nutrient availability and straw decomposition in soil[J]. Acta Pedologica Sinica, 2022, 59(1): 206-217 (in Chinese).
    [44] 王峰, 陈玉真, 吴志丹, 江福英, 余文权, 尤志明. 化肥减施对茶园土壤真菌群落结构和功能类群的影响[J]. 茶叶学报, 2021, 62(4): 170-178. WANG F, CHEN YZ, WU ZD, JIANG FY, YU WQ, YOU ZM. Effects of reduced chemical fertilizer applications on fungal community and functional groups in tea plantation soil[J]. Acta Tea Sinica, 2021, 62(4): 170-178 (in Chinese).
    [45] 傅海平, 周品谦, 王沅江, 莫泽东, 李泽恒, 马青平, Hoang Ha Nguyen, 黎星辉. 绿肥间作对茶树根际土壤真菌群落的影响[J]. 茶叶通讯, 2020, 47(3): 406-415. FU HP, ZHOU PQ, WANG YJ, MO ZD, LI ZH, MA QP, NGUYEN H, LI XH. Effects of intercropping different green manures on fungal community characteristics in rhizosphere soil of tea plant[J]. Journal of Tea Communication, 2020, 47(3): 406-415 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王星,董义杰,冯广达,姚青,柳陈坚,朱红惠. 鹤山地区健康和失管茶园土壤真菌群落结构差异及其驱动因子分析[J]. 微生物学报, 2024, 64(5): 1417-1435

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-11
  • 最后修改日期:2024-02-07
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-04
文章二维码