低温下阻遏蛋白MogR对单增李斯特菌鞭毛形成的影响
作者:
基金项目:

国家重点研发计划(2022YFD1800100)


Role of repressor MogR in flagellar biosynthesis of Listeria monocytogenes at low temperatures
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】单核细胞增生李斯特菌(简称单增李斯特菌) (Listeria monocytogenes, Lm)是食源性病原菌,可以引发李斯特菌病(listeriosis)。Lm能在低温下生长,对冷藏食品的安全构成严重威胁,并对人类健康造成潜在的危害。Lm能低温生长与抑制鞭毛基因表达以减少鞭毛的合成有关。MogR是Lm鞭毛基因转录的阻遏蛋白,在机体里或37 ℃环境下具有阻遏作用,Lm不产生鞭毛;然而,当Lm处于20-0 ℃时MogR无阻遏作用,Lm产生鞭毛。我们研究发现在4 ℃生长条件下Lm鞭毛合成减少,但具体的分子机制尚未明确。本文探究在4 ℃下Lm鞭毛合成少与MogR起阻遏作用的关系。【方法】以Lm ATCC 19115为亲本株,分别构建了MogR和鞭毛丝蛋白FlaA的缺失株ΔmogR和ΔflaA (作为无鞭毛对照株)及其回补株cΔmogR和cΔflaA,测定了菌株在4、28、37 ℃时的运动性、鞭毛产生情况和鞭毛基因表达量,并对所构建的菌株进行了4、28、37 ℃时生长曲线的测定。【结果】在4 ℃时,mogR缺失后,菌株运动性显著强于亲本株(P<0.01),鞭毛合成量显著多于亲本株(P<0.001),鞭毛基因转录水平显著高于亲本株(P<0.001);缺失株ΔmogR的生长能力显著弱于亲本株(P<0.05)。回补株cΔmogR的运动能力、鞭毛合成量和鞭毛基因转录水平与亲本株相比,无显著性差异。【结论】在4 ℃时,Lm鞭毛产量少与MogR对鞭毛基因起转录抑制作用有关,低温条件下Lm能生长繁殖与MogR对鞭毛基因表达的抑制作用有关。本研究结果为揭示Lm低温生长机制提供了新的信息。

    Abstract:

    [Objective] Listeria monocytogenes (Lm) is a ubiquitous foodborne pathogen causing listeriosis. Lm can grow at low temperatures and thus may cause safety problems of refrigerated food and threaten the public health. The growth of Lm at low temperatures involves the inhibition of flagellar gene expression, which restricts flagellar biosynthesis. MogR is a transcriptional repressor which represses the expression of flagellar genes during intracellular infection and during extracellular growth of Lm at 37 ℃, resulting in no biosynthesis of flagella. Whereas MogR is deprived of repression function and the bacteria produce flagella during growth at 20–30 ℃. Our studies demonstrated that Lm significantly reduced the flagellar production at 4 ℃, but the molecular mechanism of which remained unclear. This study aims to reveal the relationship between the reduction of flagella and MogR repression at 4 ℃. [Methods] We constructed the mogR-deleted mutant ΔmogR and the flagellin gene flaA-deleted mutant ΔflaA (as the control strain with no flagella), and their complementary strains cΔmogR and cΔflaA with the Lm strain ATCC 19115 as the parental strain. Then, we analyzed the swarming motility, flagellar biosynthesis, and transcriptional levels of flagellar genes in above five strains at 4 ℃, 28 ℃, and 37 ℃, respectively. The growth curves of these strains were determined at 4 ℃, 28 ℃, and 37 ℃, respectively. [Results] Compared with the parental strain, ΔmogR showed significantly increased in motility, flagellar biosynthesis, and transcriptional levels of flagellar genes (P<0.01, 0.001, and 0.001, respectively) at 4 ℃. The growth of ΔmogR markedly decreased compared with the parental strain (P<0.05) at 4 ℃. The data of motility, flagellar biosynthesis, and transcriptional levels of flagellar genes in cΔmogR had no significant differences compared with the parental strain. [Conclusion] The reduction in flagellar biosynthesis was associated with the repression function of MogR in Lm at 4 ℃. The reduction in flagellar biosynthesis was of benefit to Lm proliferation at low temperatures. This study enriched our understanding of the mechanism of Lm growth at low temperatures.

    参考文献
    [1] McCOLLUM JT, CRONQUIST AB, SILK BJ, JACKSON KA, O’CONNOR KA, COSGROVE S, GOSSACK JP, PARACHINI SS, JAIN NS, ETTESTAD P, IBRAHEEM M, CANTU V, JOSHI M, DuVERNOY T, FOGG NW Jr, GORNY JR, MOGEN KM, SPIRES C, TEITELL P, JOSEPH LA, et al. Multistate outbreak of listeriosis associated with cantaloupe[J]. The New England Journal of Medicine, 2013, 369(10): 944-953.
    [2] THOMAS J, GOVENDER N, McCARTHY KM, ERASMUS LK, DOYLE TJ, ALLAM M, ISMAIL A, RAMALWA N, SEKWADI P, NTSHOE G, SHONHIWA A, ESSEL V, TAU N, SMOUSE S, NGOMANE HM, DISENYENG B, PAGE NA, GOVENDER NP, DUSE AG, STEWART R, et al. Outbreak of listeriosis in south Africa associated with processed meat[J]. The New England Journal of Medicine, 2020, 382(7): 632-643.
    [3] LACHMANN R, HALBEDEL S, LÜTH S, HOLZER A, ADLER M, PIETZKA A, AL DAHOUK S, STARK K, FLIEGER A, KLETA S, WILKING H. Invasive listeriosis outbreaks and salmon products: a genomic, epidemiological study[J]. Emerging Microbes & Infections, 2022, 11(1): 1308-1315.
    [4] CHAN YC, WIEDMANN M. Physiology and genetics of Listeria monocytogenes survival and growth at cold temperatures[J]. Critical Reviews in Food Science and Nutrition, 2009, 49(3): 237-253.
    [5] DURACK J, ROSS T, BOWMAN JP. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms[J]. PLoS One, 2013, 8(9): e73603.
    [6] CORDERO N, MAZA F, NAVEA-PEREZ H, ARAVENA A, MARQUEZ-FONTT B, NAVARRETE P, FIGUEROA G, GONZÁLEZ M, LATORRE M, REYES-JARA A. Different transcriptional responses from slow and fast growth rate strains of Listeria monocytogenes adapted to low temperature[J]. Frontiers in Microbiology, 2016, 7: 229.
    [7] KAMP HD, HIGGINS DE. Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes[J]. Molecular Microbiology, 2009, 74(2): 421-435.
    [8] GRÜNDLING A, BURRACK LS, BOUWER HG, HIGGINS DE. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33): 12318-12323.
    [9] SHEN A, HIGGINS DE. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes[J]. PLoS Pathogens, 2006, 2(4): e30.
    [10] SHEN A, KAMP HD, GRÜNDLING A, HIGGINS DE. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression[J]. Genes & Development, 2006, 20(23): 3283-3295.
    [11] CHO SY, NA H, OH HB, KWAK YM, SONG WS, PARK SC, JEON WJ, CHO H, OH BC, PARK J, KANG SG, LEE GS, YOON S. Structural basis of flagellar motility regulation by the MogR repressor and the GmaR antirepressor in Listeria monocytogenes[J]. Nucleic Acids Research, 2022, 50(19): 11315-11330.
    [12] DONS L, RASMUSSEN OF, OLSEN JE. Cloning and characterization of a gene encoding flagellin of Listeria monocytogenes[J]. Molecular Microbiology, 1992, 6(20): 2919-2929.
    [13] DESVAUX M, HÉBRAUD M. The protein secretion systems in Listeria: inside out bacterial virulence[J]. FEMS Microbiology Reviews, 2006, 30(5): 774-805.
    [14] CHENG C, WANG H, MA T, HAN X, YANG Y, SUN J, CHEN Z, YU H, HANG Y, LIU F, FANG W, JIANG L, CAI C, SONG H. Flagellar basal body structural proteins FlhB, FliM, and FliY are required for flagellar-associated protein expression in Listeria monocytogenes[J]. Frontiers in Microbiology, 2018, 9: 208.
    [15] BIGOT A, PAGNIEZ H, BOTTON E, FRÉHEL C, DUBAIL I, JACQUET C, CHARBIT A, RAYNAUD C. Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity[J]. Infection and Immunity, 2005, 73(9): 5530-5539.
    [16] ALLERBERGER F. Listeria: growth, phenotypic differentiation and molecular microbiology[J]. FEMS Immunology and Medical Microbiology, 2003, 35(3): 183-189.
    [17] YIN YL, YAO H, DOIJAD S, KONG SW, SHEN Y, CAI XX, TAN WJ, WANG YT, FENG YW, LING ZT, WANG GL, HU YC, LIAN K, SUN XY, LIU YL, WANG CB, JIAO KH, LIU GP, SONG RL, CHEN X, PAN ZM, LOESSNER MJ, CHAKRABORTY T, JIAO XA. A hybrid sub-lineage of Listeria monocytogenes comprising hypervirulent isolates[J]. Nature Communications, 2019, 10: 4283.
    [18] DOUMITH M, BUCHRIESER C, GLASER P, JACQUET C, MARTIN P. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR[J]. Journal of Clinical Microbiology, 2004, 42(8): 3819-3822.
    [19] DOUMITH M, JACQUET C, GERNER-SMIDT P, GRAVES LM, LONCAREVIC S, MATHISEN T, MORVAN A, SALCEDO C, TORPDAHL M, VAZQUEZ JA, MARTIN P. Multicenter validation of a multiplex PCR assay for differentiating the major Listeria monocytogenes serovars 1/2a, 1/2b, 1/2c, and 4b: toward an international standard[J]. Journal of Food Protection, 2005, 68(12): 2648-2650.
    [20] KAMP HD, HIGGINS DE. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes[J]. PLoS Pathogens, 2011, 7(8): e1002153.
    [21] OH HB, LEE S, YOON S. Structural and biochemical analyses of the flagellar expression regulator DegU from Listeria monocytogenes[J]. Scientific Reports, 2022, 12: 10856.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪国俊,邓霞,栗绍文,刘梅. 低温下阻遏蛋白MogR对单增李斯特菌鞭毛形成的影响[J]. 微生物学报, 2024, 64(5): 1506-1520

复制
分享
文章指标
  • 点击次数:209
  • 下载次数: 542
  • HTML阅读次数: 296
  • 引用次数: 0
历史
  • 收稿日期:2023-11-20
  • 最后修改日期:2024-01-26
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-04
文章二维码