不同盐渍化生境野生乌拉尔甘草土壤细菌群落结构及功能预测分析
作者:
基金项目:

国家自然科学基金(31760046)


Composition and functions of soil bacterial communities of wild Glycyrrhiza uralensis Fisch. in habitats with different degrees of salinization
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [60]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究典型盐生药用植物野生乌拉尔甘草在不同盐渍化生境下土壤细菌群落多样性、组成和功能特征,有助于建立土壤盐分与甘草生长发育、药材品质形成相关的微生物组之间的联系,对栽培甘草药材品质提高具有重要意义。【方法】从野生乌拉尔甘草的6个主分布区采集原生境土壤,采用高通量测序技术比较非盐渍(un-salinization, US)、轻度盐渍(light salinization, LS)、中度盐渍(moderate salinization, MS)以及重度盐渍(heavy salinization, HS)生境中土壤细菌群落多样性、组成及功能的差异,并挖掘不同生境中优势细菌。【结果】野生乌拉尔甘草原生境土壤细菌群落丰富度和多样性在轻度盐渍(LS)组和中度盐渍(MS)组中明显高于非盐渍(US)组、重度盐渍(HS)组,且重度盐渍(HS)组最低。主成分分析(principal component analysis, PCA)表明不同盐渍程度组间的野生乌拉尔甘草土壤细菌群落组成和功能具有显著差异(P<0.05);冗余分析(redundancy analysis, RDA)表明,土壤盐分(total salt, TS)既是影响原生境土壤细菌群落组成也是影响群落功能的重要因子。属水平,非盐渍(US)组和轻度盐渍(LS)组中的显著优势细菌相同,均为植物有益菌,包括类诺卡氏菌属(Nocardioides)、链霉菌属(Streptomyces)、栖大理石菌属(Marmoricola);重度盐渍(MS)组中显著优势属既包括有益菌未鉴定_酸杆菌属(unidentified_Acidobacteria),也包括嗜盐菌盐单胞菌属(Halomonas)、海杆菌属(Marinobacter);重度盐渍(HS)组中显著优势细菌以嗜盐菌或耐盐菌为主,包括盐单胞菌属(Halomonas)、海杆菌属(Marinobacter)、楚帕氏菌属(Truepera)、别样矿生菌属(Aliifodinibius)、盐坑微菌属(Salinimicrobium)和需盐杆菌属(Salegentibacter)。PICRUSt功能预测分析强调非盐渍(US)组、轻度盐渍(LS)组和中度盐渍(MS)组中的土壤细菌群落与植物互作方面的潜力,表明非盐渍、轻度盐渍和中度盐渍生境中的有益菌对野生乌拉尔甘草生长发育、品质形成具有重要影响。PICRUSt功能预测同时也强调了重度盐渍(HS)组在自我修复适应高盐环境以及参与野生乌拉尔甘草耐盐性提高方面具有潜能,表明重度盐渍生境中的嗜盐菌和耐盐菌对乌拉尔甘草抗盐能力具有重要作用。中度盐渍生境兼具以上二者优势菌群的特征,是值得关注的类型。【结论】野生乌拉尔甘草土壤细菌群落多样性和丰富度在轻度盐渍和中度盐渍生境中明显高于非盐渍和重度盐渍生境;细菌群落的组成和功能在非盐渍和轻度盐渍生境中具有相似性,并与重度盐渍生境存在显著差异,中度盐渍生境兼具以上二者的特征。

    Abstract:

    [Objective] We investigated the diversity, composition, and functions of soil bacterial communities of wild Glycyrrhiza uralensis Fisch., a typical halophyte and medicinal plant, in the habitats with different degrees of salinization. The study can help to reveal the linkage between soil salinity and microbiome related to the growth, development, and quality formation of G. uralensis, being essential for improving the quality of cultivated G. uralensis. [Methods] Soil samples were collected from six main habitats of wild G. uralensis. High-throughput sequencing was employed to compare the diversity, composition, and functions of soil bacterial communities among the habitats of un-salinization (US), light salinization (LS), moderate salinization (MS), and heavy salinization (HS) and to excavate the dominant bacteria in different habitats. [Results] The soil bacterial richness and diversity of wild G. uralensis were higher in LS and MS habitats than in US and HS habitats and were the lowest in the HS group. The principal component analysis (PCA) revealed differences in the composition and functions of soil bacterial communities between groups with different degrees of salinization (P<0.05). The redundancy analysis (RDA) showed that total salinity (TS) was an important factor influencing the composition and functions of the soil bacterial community in the native habitat. The dominant bacterial genera in the US and LS groups were the same, all of which were plant-beneficial bacteria, including Nocardioides, Streptomyces, and Marmoricola. The significantly dominant genera in the MS group included both the beneficial bacteria unidentified_Acidobacteria and the halophilic bacteria Halomonas and Marinobacter. The soil bacteria in the HS group were dominated by salinophilic or salinity-tolerant bacteria, including Halomonas, Marinobacter, Truepera, Alifodinibius, Salinimicrobium, and Salegentibacter. The PICRUSt prediction results underlined the potential of soil bacteria in interactions with plants in US, LS, and MS groups, suggesting that beneficial bacteria in the three habitats influenced the growth, development, and quality formation of wild G. uralensis. Moreover, the prediction results emphasized that the soil bacteria endowed the HS group with the potential of self-repairing for adaptation to highly saline environments and improving the salt tolerance of wild G. uralensis. This result suggested that halophilic and salt-tolerant bacteria in the HS habitat played a key role in the salt tolerance of wild G. uralensis. The MS habitat had both kinds of bacteria, being worthy of attention. [Conclusion] The soil bacterial diversity and richness of wild G. uralensis were remarkably higher in LS and MS habitats than in US and HS habitats. The composition and functions of soil bacterial communities in US and LS habitats were similar and differed significantly from those of the HS habitat, and the MS habitat had characteristics of both the above.

    参考文献
    [1] LEE H, LEE S, SHIN Y, CHO M, KANG H, CHO H. Anti-cancer effect of quercetin in xenograft models with EBV-associated human gastric carcinoma[J]. Molecules, 2016, 21(10): 1286.
    [2] HUAN CC, XU Y, ZHANG W, GUO TT, PAN HC, GAO S. Research progress on the antiviral activity of glycyrrhizin and its derivatives in liquorice[J]. Frontiers in Pharmacology, 2021, 12: 680674.
    [3] 李学禹, 陆嘉惠. 甘草属(Glycyrrhiza L.)分类系统与实验生物学研究[M]. 上海: 复旦大学出版社, 2015. LI XY, LU JH. Taxonomy and Experimental Biology of the Genus Glycyrrhiza L.[M]. Shanghai: Fudan Press, 2015 (in Chinese).
    [4] 赵可夫, 李法曾, 樊守金, 冯立田. 中国的盐生植物[J]. 植物学通报, 1999, 34(3): 201. ZHAO KF, LI FZ, FAN SJ, FENG LT. Halophytes in China[J]. Chinese Bulletin of Botany, 1999, 34(3): 201 (in Chinese).
    [5] SHEN ZH, PU XZ, WANG SM, DONG XX, CHENG XJ, CHENG MX. Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake[J]. Scientific Reports, 2022, 12: 5089.
    [6] 张淑彬, 陈理, 王茜, 王幼珊, 荆卫民. AM真菌对干旱区7种珍稀濒危植物引种培育的影响研究[J]. 干旱区地理, 2017, 40(4): 780-786. ZHANG SB, CHEN L, WANG Q, WANG YS, JING WM. Effects of AM fungi on introduction and cultivation of seven rare and endangered plants in arid region[J]. Arid Land Geography, 2017, 40(4): 780-786 (in Chinese).
    [7] WANG CC, CAI H, ZHAO H, YAN Y, SHI JJ, CHEN SY, TAN MX, CHEN JL, ZOU LS, CHEN CH, LIU ZX, XU CQ, LIU XH. Distribution patterns for metabolites in medicinal parts of wild and cultivated licorice[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161: 464-473.
    [8] 郭兰萍, 周良云, 康传志, 王红阳, 张文晋, 王升, 王瑞杉, 王晓, 韩邦兴, 周涛, 黄璐琦. 药用植物适应环境胁迫的策略及道地药材“拟境栽培”[J]. 中国中药杂志, 2020, 45(9): 1969-1974. GUO LP, ZHOU LY, KANG CZ, WANG HY, ZHANG WJ, WANG S, WANG RS, WANG X, HAN BX, ZHOU T, HUANG LQ. Strategies for medicinal plants adapting environmental stress and “simulative habitat cultivation” of Dao-di herbs[J]. China Journal of Chinese Materia Medica, 2020, 45(9): 1969-1974 (in Chinese).
    [9] WANG G, REN Y, BAI XJ, SU YY, HAN JP. Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants[J]. Plants, 2022, 11(23): 3200.
    [10] 何冬梅, 王海, 陈金龙, 赖长江生, 严铸云, 黄璐琦. 中药微生态与中药道地性[J]. 中国中药杂志, 2020, 45(2): 290-302. HE DM, WANG H, CHEN JL, LAI CJS, YAN ZY, HUANG LQ. Microecology and geoherbalism of traditional Chinese medicine[J]. China Journal of Chinese Materia Medica, 2020, 45(2): 290-302 (in Chinese).
    [11] YU M, XIE W, ZHANG X, ZHANG SB, WANG YS, HAO ZP, CHEN BD. Arbuscular mycorrhizal fungi can compensate for the loss of indigenous microbial communities to support the growth of liquorice (Glycyrrhiza uralensis Fisch.)[J]. Plants, 2019, 9(1): 7.
    [12] 冯维维, 武美贤, 司雨婷, 邢珂, 秦盛, 蒋继宏, 彭学. 中华补血草内生与根际具ACC脱氨酶活性细菌的筛选及其生物多样性[J]. 微生物学报, 2016, 56(4): 719-728. FENG WW, WU MX, SI YT, XING K, QIN S, JIANG JH, PENG X. Screening and biodiversity of endophytic and rhizosphere bacteria containing ACC deaminase from halophyte Limonium sinense (Girard) Kuntze[J]. Acta Microbiologica Sinica, 2016, 56(4): 719-728 (in Chinese).
    [13] SU JM, WANG YY, BAI M, PENG TH, LI HS, XU HJ, GUO GF, BAI HY, RONG N, SAHU SK, HE HJ, LIANG XX, JIN CZ, LIU W, STRUBE ML, GRAM L, LI YT, WANG ET, LIU H, WU H. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’[J]. Microbiome, 2023, 11(1): 61.
    [14] WANG HY, WANG YF, KANG CZ, WANG S, ZHANG Y, YANG G, ZHOU L, XIANG ZX, HUANG LQ, LIU DH, GUO LP. Drought stress modifies the community structure of root-associated microbes that improve Atractylodes lancea growth and medicinal compound accumulation[J]. Frontiers in Plant Science, 2022, 13: 1032480.
    [15] LIU Y, LI YM, LUO W, LIU S, CHEN WM, CHEN C, JIAO S, WEI GH. Soil potassium is correlated with root secondary metabolites and root-associated core bacteria in licorice of different ages[J]. Plant and Soil, 2020, 456(1): 61-79.
    [16] DONG ZY, RAO MPN, LIAO TJ, LI L, LIU YH, XIAO M, MOHAMAD OAA, TIAN YY, LI WJ. Diversity and function of rhizosphere microorganisms between wild and cultivated medicinal plant Glycyrrhiza uralensis Fisch. under different soil conditions[J]. Archives of Microbiology, 2021, 203(6): 3657-3665.
    [17] CHEN CY, ZHONG CF, GAO X, TAN CY, BAI H, NING K. Glycyrrhiza uralensis Fisch. root-associated microbiota: the multifaceted hubs associated with environmental factors, growth status and accumulation of secondary metabolites[J]. Environmental Microbiome, 2022, 17(1): 23.
    [18] ZHONG CF, CHEN CY, GAO X, TAN CY, BAI H, NING K. Multi-omics profiling reveals comprehensive microbe-plant-metabolite regulation patterns for medicinal plant Glycyrrhiza uralensis Fisch.[J]. Plant Biotechnology Journal, 2022, 20(10): 1874-1887.
    [19] RATH KM, FIERER N, MURPHY DV, ROUSK J. Linking bacterial community composition to soil salinity along environmental gradients[J]. The ISME Journal, 2019, 13(3): 836-846.
    [20] NICOLITCH O, COLIN Y, TURPAULT MP, UROZ S. Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees[J]. Soil Biology and Biochemistry, 2016, 103: 429-445.
    [21] ZHANG YT, SHEN H, HE XH, THOMAS BW, LUPWAYI NZ, HAO XY, THOMAS MC, SHI XJ. Fertilization shapes bacterial community structure by alteration of soil pH[J]. Frontiers in Microbiology, 2017, 8: 1325.
    [22] 金志薇, 钟文辉, 吴少松, 韩成. 植被退化对滇西北高寒草地土壤微生物群落的影响[J]. 微生物学报, 2018, 58(12): 2174-2185. JIN ZW, ZHONG WH, WU SS, HAN C. Effect of vegetation degradation on microbial communities in alpine grassland soils in northwest Yunnan[J]. Acta Microbiologica Sinica, 2018, 58(12): 2174-2185 (in Chinese).
    [23] TONG XC, CAO AP, WANG F, CHEN XF, XIE SQ, SHEN HT, JIN X, LI HB. Calcium-dependent protein kinase genes in Glycyrrhiza uralensis appear to be involved in promoting the biosynthesis of glycyrrhizic acid and flavonoids under salt stress[J]. Molecules, 2019, 24(9): 1837.
    [24] EGAMBERDIEVA D, WIRTH S, LI L, ABD-ALLAH EF, LINDSTRÖM K. Microbial cooperation in the rhizosphere improves liquorice growth under salt stress[J]. Bioengineered, 2017, 8(4): 433-438.
    [25] 张晓佳, 卢亚军, 张文晋, 张瑜, 崔高畅, 郎多勇, 张新慧. 抗旱耐盐菌剂的制备及其对甘草种子萌发的影响[J]. 生物技术通报, 2020, 36(9): 180-193. ZHANG XJ, LU YJ, ZHANG WJ, ZHANG Y, CUI GC, LANG DY, ZHANG XH. Preparation of drought-resistant and salt-tolerant bacteria and its effect on germination of licorice seeds[J]. Biotechnology Bulletin, 2020, 36(9): 180-193 (in Chinese).
    [26] ZHANG Y, LANG DY, ZHANG WJ, ZHANG XH. Bacillus cereus enhanced medicinal ingredient biosynthesis in Glycyrrhiza uralensis Fisch. under different conditions based on the transcriptome and polymerase chain reaction analysis[J]. Frontiers in Plant Science, 2022, 13: 858000.
    [27] 王遵亲, 祝寿泉, 俞仁培. 中国盐渍土[M]. 北京: 科学出版社, 1993. WANG ZQ, ZHU SQ, YU RP. Saline Soil in China[M]. Beijing: Science Press, 1993 (in Chinese).
    [28] 新疆植物志编辑委员会. 新疆植物志-第三卷[M]. 乌鲁木齐: 新疆科学技术出版社, 1993. Commissione Redaxtorum Florae Xinjiangensis. Flora Xinjiangensis, 3[M]. Urumqi: Xinjiang Science & Technology Publishing House, 1993 (in Chinese).
    [29] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000 (in Chinese).
    [30] BERRY D, BEN MAHFOUDH K, WAGNER M, LOY A. Barcoded primers used in multiplex amplicon pyrosequencing bias amplification[J]. Applied and Environmental Microbiology, 2011, 77(21): 7846-7849.
    [31] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet Journal, 2011, 17(1): 10.
    [32] MAGOČ T, SALZBERG SL. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963.
    [33] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, McDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5): 335-336.
    [34] ROGNES T, FLOURI T, NICHOLS B, QUINCE C, MAHÉ F. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584.
    [35] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998.
    [36] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J, GLÖCKNER FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
    [37] RATH KM, ROUSK J. Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review[J]. Soil Biology and Biochemistry, 2015, 81: 108-123.
    [38] ZHANG KP, SHI Y, CUI XQ, YUE P, LI KH, LIU XJ, TRIPATHI BM, CHU HY. Salinity is a key determinant for soil microbial communities in a desert ecosystem[J]. mSystems, 2019, 4(1): e00225-18.
    [39] YUE Y, SHAO TY, LONG XH, HE TF, GAO XM, ZHOU ZS, LIU ZP, RENGEL Z. Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land[J]. Science of the Total Environment, 2020, 724: 138259.
    [40] FENG YY, XU XP, LIU J, HAN JG, LU HY. Planting Suaeda salsa improved the soil properties and bacterial community diversity in a coastal mudflat[J]. Land Degradation & Development, 2023, 34(11): 3262-3271.
    [41] LIU JM, YU JL, SI WT, DING G, ZHANG SH, GONG DH, BI J. Variations in bacterial diversity and community structure in the sediments of an alkaline lake in Inner Mongolia Plateau, China[J]. PeerJ, 2023, 11: e15909.
    [42] ZVYAGINTSEV DG, ZENOVA GM, OBOROTOV GV. Moderately haloalkaliphilic actinomycetes in salt-affected soils[J]. Eurasian Soil Science, 2009, 42(13): 1515-1520.
    [43] LI L, MOHAMAD OAA, MA JB, FRIEL AD, SU YG, WANG Y, MUSA Z, LIU YH, HEDLUND BP, LI WJ. Synergistic plant-microbe interactions between endophytic bacterial communities and the medicinal plant Glycyrrhiza uralensis F.[J]. Antonie Van Leeuwenhoek, 2018, 111(10): 1735-1748.
    [44] 席娇, 徐腾起, 刘玉涛, 马永清, 薛泉宏, 林雁冰. Streptomyces rochei D74菌剂对向日葵、列当及其根际微生物的影响[J]. 微生物学报, 2023, 63(2): 745-759. XI J, XU TQ, LIU YT, MA YQ, XUE QH, LIN YB. Effect of Streptomyces rochei D74 on sunflower, Orobanche cumana, and their rhizosphere microorganisms[J]. Acta Microbiologica Sinica, 2023, 63(2): 745-759 (in Chinese).
    [45] JIA WJ, WANG S, HE XH, ZHAO XY. Different factors drive the assembly of pine and Panax notoginseng-associated microbiomes in Panax notoginseng-pine agroforestry systems[J]. Frontiers in Microbiology, 2022, 13: 1018989.
    [46] EICHORST SA, TROJAN D, ROUX S, HERBOLD C, RATTEI T, WOEBKEN D. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments[J]. Environmental Microbiology, 2018, 20(3): 1041-1063.
    [47] MUKHTAR S, MIRZA BS, MEHNAZ S, MIRZA MS, MCLEAN J, MALIK KA. Impact of soil salinity on the microbial structure of halophyte rhizosphere microbiome[J]. World Journal of Microbiology and Biotechnology, 2018, 34(9): 136.
    [48] ZHANG Y, SUN XJ, QIAN C, LI L, SHANG XF, XIAO XF, GAO Y. Impact of petroleum contamination on the structure of saline soil bacterial communities[J]. Current Microbiology, 2022, 79(11): 351.
    [49] NING Q, CHEN L, LI F, ZHOU GX, ZHANG CZ, MA DH, ZHANG JB. Tradeoffs of microbial life history strategies drive the turnover of microbial-derived organic carbon in coastal saline soils[J]. Frontiers in Microbiology, 2023, 14: 1141436.
    [50] DRAGOJEVIĆ M, STANKOVIC N, DJOKIC L, RAIČEVIĆ V, JOVIČIĆ-PETROVIĆ J. Endorhizosphere of indigenous succulent halophytes: a valuable resource of plant growth promoting bacteria[J]. Environmental Microbiome, 2023, 18(1): 20.
    [51] IVANOVA N, ROHDE C, MUNK C, NOLAN M, LUCAS S, del RIO TG, TICE H, DESHPANDE S, CHENG JF, TAPIA R, HAN C, GOODWIN L, PITLUCK S, LIOLIOS K, MAVROMATIS K, MIKHAILOVA N, PATI A, CHEN A, PALANIAPPAN K, LAND M, et al. Complete genome sequence of Truepera radiovictrix type strain (RQ-24)[J]. Standards in Genomic Sciences, 2011, 4(1): 91-99.
    [52] ALESSI AM, BIRD SM, OATES NC, LI Y, DOWLE AA, NOVOTNY EH, DEAZEVEDO ER, BENNETT JP, POLIKARPOV I, MCQUEEN-MASON SJ, BRUCE NC. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies[J]. Biotechnology for Biofuels, 2018, 11: 166.
    [53] GENG HH, WANG F, YAN CC, MA S, ZHANG YY, QIN QZ, TIAN ZJ, LIU RP, CHEN HL, ZHOU BH, YUAN RF. Rhizosphere microbial community composition and survival strategies in oligotrophic and metal(loid) contaminated iron tailings areas[J]. Journal of Hazardous Materials, 2022, 436: 129045.
    [54] RAMADAN AM, NAZAR MAH, GADALLAH NO. Metagenomic analysis of rhizosphere bacteria in desert plant Calotropis procera[J]. Geomicrobiology Journal, 2021, 38(5): 375-383.
    [55] CHEN T, HU RW, ZHENG ZY, YANG JY, FAN H, DENG XQ, YAO W, WANG QM, PENG SG, LI J. Soil bacterial community in the multiple cropping system increased grain yield within 40 cultivation years[J]. Frontiers in Plant Science, 2021, 12: 804527.
    [56] QIU LP, KONG WB, ZHU HS, ZHANG Q, BANERJEE S, ISHII S, SADOWSKY MJ, GAO JL, FENG CZ, WANG JJ, CHEN CL, LU TH, SHAO MG, WEI GH, WEI XR. Halophytes increase rhizosphere microbial diversity, network complexity and function in inland saline ecosystem[J]. Science of the Total Environment, 2022, 831: 154944.
    [57] ZENG Y, CHARKOWSKI AO. The role of ATP-binding cassette transporters in bacterial phytopathogenesis[J]. Phytopathology, 2021, 111(4): 600-610.
    [58] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18: 607-621.
    [59] MALIK AA, MARTINY JBH, BRODIE EL, MARTINY AC, TRESEDER KK, ALLISON SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14: 1-9.
    [60] KUVARINA AE, GAVRYUSHINA IA, SYKONNIKOV MA, EFIMENKO TA, MARKELOVA NN, BILANENKO EN, BONDARENKO SA, KOKAEVA LY, TIMOFEEVA AV, SEREBRYAKOVA MV, BARASHKOVA AS, ROGOZHIN EA, GEORGIEVA ML, SADYKOVA VS. Exploring peptaibol’s profile, antifungal, and antitumor activity of emericellipsin A of Emericellopsis species from soda and saline soils[J]. Molecules, 2022, 27(5): 1736.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐可,陆嘉惠,李新,张迦得,罗加粉,郑雪荣. 不同盐渍化生境野生乌拉尔甘草土壤细菌群落结构及功能预测分析[J]. 微生物学报, 2024, 64(5): 1550-1566

复制
分享
文章指标
  • 点击次数:339
  • 下载次数: 677
  • HTML阅读次数: 258
  • 引用次数: 0
历史
  • 收稿日期:2023-11-28
  • 最后修改日期:2024-01-31
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-04
文章二维码