一株糖降解噬糖菌FZY0027的多糖水解活性及基因组分析
作者:
基金项目:

国家自然科学基金(31900001);江苏省海洋科技创新项目(JSZRHYKJ202209)


Polysaccharide hydrolysis activity and genomic information of Saccharophagus degradans FZY0027
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】潮间带海水中分离获得一株具有水解多糖能力的菌株FZY0027,分析其对不同多糖的水解能力和基因组特征。【方法】通过形态观察、16S rRNA基因测序和基于Illumina NovaSeq和OxfordNanopore PromethION测序技术全基因组测序对菌株FZY0027进行鉴定。使用dbCAN、EasyCGTree、BRIG和Easyfig等生物信息学软件将菌株FZY0027和降解糖噬糖菌(Saccharophagus degradans) 2-40T进行比较。使用3,5-二硝基水杨酸(3,5-dinitrosalicylic acid, DNS)法测定多糖水解活性。【结果】菌株FZY0027与S. degradans 2-40T的16S rRNA基因序列相似度达到99.9%,初步鉴定为降解糖噬糖菌(S. degradans) FZY0027。该菌株在水解淀粉、木聚糖和甘露聚糖时产生的还原糖浓度最高,分别为2.28、1.75和1.10 mg/mL。菌株FZY0027基因组全长5 178 381 bp,共编码4 156个基因,G+C含量为45.8%。菌株FZY0027与S. degradans 2-40T的平均核苷酸一致性(average nucleotide identity, ANI)、平均氨基酸一致性(average amino acid identity, AAI)和DNA-DNA分子杂交(digital DNA-DNA hybridization, dDDH)值分别为96.5%、96.7%和70.0%。经碳水化合物活性酶数据库注释获得303个基因,其中,菌株FZY0027和S. degradans 2-40T分别有糖苷水解酶(glycoside hydrolases, GHs)结构域的基因137个和130个。菌株FZY0027具有多个参与淀粉、木聚糖等多糖水解的基因,这与菌株FZY0027对淀粉和木聚糖的水解能力强的结果一致。然而,与S. degradans 2-40T相比,菌株FZY0027在实验条件下只能水解少数多糖,这可能需要特定的诱导条件才能充分发挥其多糖水解能力。【结论】菌株FZY0027是一株多能型多糖水解菌,具有潜在开发价值。

    Abstract:

    [Objective] To analyze the polysaccharide hydrolysis activity and genomic characteristics of a Gram-negative bacterial strain FZY0027 isolated from intertidal seawater. [Methods] The strain FZY0027 was identified based on the morphological characteristics, 16S rRNA gene sequence, and the whole genome sequence determined by Illumina NovaSeq and Oxford Nanopore PromethION. Bioinformatics tools such as dbCAN, EasyCGTree, BRIG, and Easyfig were used to compare the strain FZY0027 with Saccharophagus degradans 2-40T. The 3,5-dinitrosalicylic acid (DNS) method was employed to measure the polysaccharide hydrolysis activity of strain FZY0027. [Results] The 16S rRNA gene sequence showed the similarity of 99.9% between strain FZY0027 and S. degradans 2-40T, and thus strain FZY0027 was preliminarily identified as S. degradans FZY0027. The highest levels of reducing sugars (2.28, 1.75, and 1.10 mg/mL, respectively) were produced by FZY0027 through the hydrolysis of starch, xylan, and mannose. The genome of strain FZY0027 was 5 178 381 bp, encoding a total of 4 156 genes, with the G+C content of 45.8%. The average nucleotide identity (ANI), average amino acid identity (AAI), and digital DNA-DNA hybridization (dDDH) values between strain FZY0027 and S. degradans 2-40T were 96.5%, 96.7%, and 70.0%, respectively. A total of 303 genes were annotated in the Carbohydrate-Active Enzyme database, and there was a significant difference in the number (137 and 130, respectively) of genes encoding glycoside hydrolases (GHs) between strain FZY0027 and S. degradans 2-40T. Strain FZY0027 carried multiple genes involved in the hydrolysis of starch and xylan, which was corresponding to its strong ability to hydrolyse starch and xylan. However, compared with S. degradans 2-40T, strain FZY0027 could only hydrolyse a few polysaccharides under the experimental conditions in this study, which suggested that this strain may require specific culture conditions to fully exert its polysaccharide hydrolysis ability. [Conclusion] Strain FZY0027 is a versatile polysaccharide-hydrolyzing bacterium with the potential for bioresource utilization.

    参考文献
    [1] 孙冲, 姚昱锟, 方婷, 李长城. 海洋寡糖制备工艺及生物活性的研究进展[J]. 食品工业科技, 2021, 42(18): 446-453. SUN C, YAO YK, FANG T, LI CC. Research progress on preparation process and biological activity of marine oligosaccharides[J]. Science and Technology of Food Industry, 2021, 42(18): 446-453 (in Chinese).
    [2] WEINER RM, TAYLOR LE, HENRISSAT B, HAUSER L, LAND M, COUTINHO PM, RANCUREL C, SAUNDERS EH, LONGMIRE AG, ZHANG HT, BAYER EA, GILBERT HJ, LARIMER F, ZHULIN IB, EKBORG NA, LAMED R, RICHARDSON PM, BOROVOK I, HUTCHESON S. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40T[J]. PLOS Genetics, 2008, 4(5): e1000087.
    [3] HUTCHESON SW, ZHANG H, SUVOROV M. Carbohydrase systems of Saccharophagus degradans degrading marine complex polysaccharides[J]. Marine Drugs, 2011, 9(4): 645-665.
    [4] KIM HT, LEE S, LEE D, KIM HS, BANG WG, KIM KH, CHOI IG. Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: an exo-type β-agarase producing neoagarobiose[J]. Applied Microbiology and Biotechnology, 2010, 86(1): 227-234.
    [5] EKBORG NA, TAYLOR LE, LONGMIRE AG, HENRISSAT B, WEINER RM, HUTCHESON SW. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40[J]. Applied and Environmental Microbiology, 2006, 72(5): 3396-3405.
    [6] LEE S, LEE JY, HA SC, JUNG J, SHIN DH, KIM KH, CHOI IG. Crystallization and preliminary X-ray analysis of neoagarobiose hydrolase from Saccharophagus degradans 2-40[J]. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 2009, 65(Pt12): 1299-1301.
    [7] JANG WY, KWON MJ, KIM KY, KIM YH. Enzymatic characterization of a novel recombinant 1,3-α-3,6-anhydro-l-galactosidase specific for neoagarobiose hydrolysis into monosaccharides[J]. Applied Microbiology and Biotechnology, 2021, 105(11): 4621-4634.
    [8] HU XJ, MENESES YE, STRATTON J, HUO SH. Direct processing of alginate-immobilized microalgae into polyhydroxybutyrate using marine bacterium of Saccharophagus degradans[J]. Bioresource Technology, 2022, 351: 126898.
    [9] KARGUPTA W, KAFLE SR, LEE Y, KIM BS. One-pot treatment of Saccharophagus degradans for polyhydroxyalkanoate production from brown seaweed[J]. Bioresource Technology, 2023, 385: 129392.
    [10] LEE Y, OH C, de ZOYSA M, KIM H, WICKRAMAARACHCHI WDN, WHANG I, KANG DH, LEE J. Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16β-agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli[J]. Journal of Microbiology and Biotechnology, 2013, 23(7): 913-922.
    [11] SAKATOKU A, TANAKA D, NAKAMURA S. Purification and characterization of an alkaliphilic alginate lyase AlgMytC from Saccharophagus sp. Myt-1[J]. Journal of Microbiology and Biotechnology, 2013, 23(6): 872-877.
    [12] WEISBURG WG, BARNS SM, PELLETIER DA, LANE DJ. 16S ribosomal DNA amplification for phylogenetic study[J]. Journal of Bacteriology, 1991, 173(2): 697-703.
    [13] KUMAR S, STECHER G, LI M, KNYAZ C, TAMURA K. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547-1549.
    [14] KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16(2): 111-120.
    [15] SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees[J]. Molecular Biology and Evolution, 1987, 4(4): 406-425.
    [16] FELSENSTEIN J. Confidence limits on phylogenies: an approach using the bootstrap[J]. Evolution, 1985, 39(4): 783-791.
    [17] NURK S, BANKEVICH A, ANTIPOV D, GUREVICH AA, KOROBEYNIKOV A, LAPIDUS A, PRJIBELSKI AD, PYSHKIN A, SIROTKIN A, SIROTKIN Y, STEPANAUSKAS R, CLINGENPEEL SR, WOYKE T, MCLEAN JS, LASKEN R, TESLER G, ALEKSEYEV MA, PEVZNER PA. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products[J]. Journal of Computational Biology, 2013, 20(10): 714-737.
    [18] OKONECHNIKOV K, GOLOSOVA O, FURSOV M, TEAM TU. Unipro UGENE: a unified bioinformatics toolkit[J]. Bioinformatics, 2012, 28(8): 1166-1167.
    [19] TATUSOVA T, DiCUCCIO M, BADRETDIN A, CHETVERNIN V, NAWROCKI EP, ZASLAVSKY L, LOMSADZE A, PRUITT KD, BORODOVSKY M, OSTELL J. NCBI prokaryotic genome annotation pipeline[J]. Nucleic Acids Research, 2016, 44(14): 6614-6624.
    [20] HUERTA-CEPAS J, SZKLARCZYK D, HELLER D, HERNÁNDEZ-PLAZA A, FORSLUND SK, COOK H, MENDE DR, LETUNIC I, RATTEI T, JENSEN LJ, MERING CV, BORK P. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): D309-D314.
    [21] PARKS DH, RINKE C, CHUVOCHINA M, CHAUMEIL PA, WOODCROFT BJ, EVANS PN, HUGENHOLTZ P, TYSON GW. Recovery of nearly 8000 metagenome-assembled genomes substantially expands the tree of life[J]. Nature Microbiology, 2017, 2: 1533-1542.
    [22] ZHANG DF, HE W, SHAO ZZ, AHMED I, ZHANG YQ, LI WJ, ZHAO Z. EasyCGTree: a pipeline for prokaryotic phylogenomic analysis based on core gene sets[J]. BMC Bioinformatics, 2023, 24(1): 390.
    [23] MEIER-KOLTHOFF JP, AUCH AF, KLENK HP, GÖKER M. Genome sequence-based species delimitation with confidence intervals and improved distance functions[J]. BMC Bioinformatics, 2013, 14(1): 1-14.
    [24] YOON SH, HA SM, LIM J, KWON S, CHUN J. A large-scale evaluation of algorithms to calculate average nucleotide identity[J]. Antonie Van Leeuwenhoek, 2017, 110(10): 1281-1286.
    [25] VISHNUPRIYA S, JABIR T, ADARSH BM, KATTATHEYIL H, SHAHANA KABEER S, KRISHNAN KP, RADHAKRISHNAN CK, MOHAMED HATHA AA. Diversity of complex polysaccharide degrading bacteria from the sediments of interlinked high Arctic fjords, Svalbard[J]. Regional Studies in Marine Science, 2023, 63: 102989.
    [26] ENSOR LA, STOSZ SK, WEINER RM. Expression of multiple complex polysaccharide-degrading enzyme systems by marine bacterium strain 2-40[J]. Journal of Industrial Microbiology and Biotechnology, 1999, 23(2): 123-126.
    [27] MILLER GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31(3): 426-428.
    [28] CANTAREL BL, COUTINHO PM, RANCUREL C, BERNARD T, LOMBARD V, HENRISSAT B. The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(suppl_1): D233-D238.
    [29] YIN YB, MAO XZ, YANG JC, CHEN X, MAO FL, XU Y. dbCAN: a web resource for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Research, 2012, 40(W1): W445-W451.
    [30] SCHUSTER-BÖCKLER B, BATEMAN A. An introduction to hidden Markov models[J]. Current Protocols in Bioinformatics, 2007, 18: A.3A.1-A.SA.9.
    [31] EDDY SR. A new generation of homology search tools based on probabilistic inference[J]. Genome Informatics International Conference on Genome Informatics, 2009, 23(1): 205-211.
    [32] ALIKHAN NF, PETTY NK, BEN ZAKOUR NL, BEATSON SA. BLAST ring image generator (BRIG): simple prokaryote genome comparisons[J]. BMC Genomics, 2011, 12(1): 1-10.
    [33] ALTSCHUL SF, MADDEN TL, SCHÄFFER AA, ZHANG JH, ZHANG Z, MILLER W, LIPMAN DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402.
    [34] SULLIVAN MJ, PETTY NK, BEATSON SA. Easyfig: a genome comparison visualizer[J]. Bioinformatics, 2011, 27(7): 1009-1010.
    [35] 杜宗军, 王祥红, 李筠, 陈吉祥. 琼胶酶研究进展[J]. 微生物学通报, 2003, 30(1): 64-67. DU ZJ, WANG XH, LI J, CHEN JX. Advance in research of agarase[J]. Microbiology China, 2003, 30(1): 64-67 (in Chinese).
    [36] KHANDEPARKER R, VERMA P, MEENA RM, DEOBAGKAR DD. Phylogenetic diversity of carbohydrate degrading culturable bacteria from Mandovi and Zuari estuaries, Goa, west coast of India[J]. Estuarine, Coastal and Shelf Science, 2011, 95(4): 359-366.
    [37] FATURRAHMAN F, MERYANDINI A, JUNIOR MZ, RUSMANA I. Isolation and identification of an agar-liquefying marine bacterium and some properties of its extracellular agarases[J]. Biodiversitas, 2011, 12(4): 192-197.
    [38] GAO BL, LI L, WU H, ZHU D, JIN M, QU W, ZENG RY. A novel strategy for efficient agaro-oligosaccharide production based on the enzymatic degradation of crude agarose in Flammeovirga pacifica WPAGA1[J]. Frontiers in Microbiology, 2019, 10: 1231.
    [39] 魏晓凤, 范翰, 马俊, 汪俊卿, 李丕武. 碳水化合物结合结构域的研究进展[J]. 齐鲁工业大学学报, 2022, 36(2): 13-19. WEI XF, FAN H, MA J, WANG JQ, LI PW. Research progress of carbohydrate-binding modules[J]. Journal of Qilu University of Technology, 2022, 36(2): 13-19 (in Chinese).
    引证文献
引用本文

傅子玥,张道锋,黄梦涵,李敬霖,苏浩辰,李文均. 一株糖降解噬糖菌FZY0027的多糖水解活性及基因组分析[J]. 微生物学报, 2024, 64(5): 1593-1606

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-12
  • 最后修改日期:2024-02-07
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-04
文章二维码