BtBar基因转化对水稻不同组织生态位微生物群落组成及潜在功能影响
作者:
基金项目:

国家自然科学基金(32071657);上海市农业科学院攀高计划(PG23211)


Effects of Bt and Bar transformation on microbial community composition and potential functions in different tissues of rice plants
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】转Bt基因和Bar基因植物的微生态效应是环境安全评价的重要因素,但关于Bt基因和Bar基因转化引起的水稻基因型改变对水稻不同组织生态位微生物群落组成和潜在功能的影响还无系统研究。【方法】以转Bt基因和Bar基因水稻T1C-1及其亲本对照Minghui63为研究对象,基于细菌16S rRNA基因和真菌ITS高通量测序技术,分析抽穗期T1C-1和Minghui63根际土壤微生物以及根、茎、叶内生菌的群落结构和潜在功能。【结果】细菌和真菌群落多样性在水稻不同组织生态位之间发生显著变化,地下部分组织生态位(根际土壤和根系)微生物多样性显著高于地上部分(叶和茎)。T1C-1显著影响叶片内生真菌的香农指数和辛普森指数,而对茎和根的内生菌以及根际土壤微生物多样性无显著影响。叶片内生真菌曲霉菌属(Aspergillus)和篮状菌属(Talaromyces)相对丰度在T1C-1显著增加,推测其参与碳素代谢、能量代谢和转录作用酶合成等过程。T1C-1和Minghui63微生物群落关联网络分析表明,T1C-1的平均聚类系数和平均度显著高于Minghui63,因而T1C-1提高了相关微生物群落网络复杂程度。通过重建未观测状态对群落进行系统发育研究(phylogenetic investigation of communities by reconstruction of unobserved states, PICRUSt2),对叶片内生真菌功能酶基因进行功能预测,相对于Minghui63,T1C-1显著改变了碳素代谢、脂类代谢和能量代谢等途径。【结论】相较于根际土壤,叶片内生真菌的群落组成和潜在功能对T1C-1更敏感。尽管如此,T1C-1并未导致叶片内生真菌的多样性指数降低。为了更准确地评估转基因植物的微生态效应,我们需要加强对不同组织生态位内生菌多样性的关注。

    Abstract:

    [Objective] The microecological effects of transgenic plants with Bt and Bar genes are an important aspect of environmental safety assessment. However, few studies concern the impacts of rice genotypic alterations induced by Bt and Bar transformation on the microbial community composition and potential functions in different tissues of rice plants. [Methods] High-throughput sequencing of bacterial 16S rRNA gene and fungal ITS was performed to analyze the microbial community structure and potential functions in the rhizosphere soil, roots, stems, and leaves of Bt and Bar transgenic rice T1C-1 and its parent Minghui63 (control) at the heading stage. [Results] The bacterial and fungal diversity varied among different tissues in rice plants, being significantly higher in the underground niches (rhizosphere soil and roots) than in the aboveground parts (leaves and stems). T1C-1 significantly affected the Shannon index and Simpson index of endophytic fungi in leaves but had no significant effect on the microbial diversity in the stems, roots, or rhizosphere soil. The endophytic fungi Aspergillus and Talaromyces showed increased relative abundance in the leaves of T1C-1, which suggested their involvement in processes such as carbon metabolism, energy metabolism, and transcription. The average clustering coefficient and average degree of the microbial communities in T1C-1 were significantly higher than those in Minghui63, indicating that T1C-1 increased the complexity of the microbial community network. Phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt2) was employed to predict the functional enzyme genes of endophytic fungi in the leaves, which showed that T1C-1 significantly altered the pathways such as carbon metabolism, lipid metabolism, and energy metabolism compared with Minghui63. [Conclusion] The community composition and potential functions of endophytic fungi in leaves were more sensitive to T1C-1 than those in the rhizosphere soil, while T1C-1 did not decrease the diversity of endophytic fungi in leaves. More attention should be paid to the diversity changes of endophytic microorganisms in different ecological niches of plant tissues in the evaluation of the microecological effects of transgenic plants.

    参考文献
    [1] ISAAA. Global Status of Commercialized Biotech/GM Crops: ISAAA Brief No. 55[EB]. https://www.isaaa. org.Accessed year: 2024.
    [2] BECKERS B, de BEECK MO, WEYENS N, BOERJAN W, VANGRONSVELD J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25.
    [3] PII Y, MIMMO T, TOMASI N, TERZANO R, CESCO S, CRECCHIO C. Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process: a review[J]. Biology and Fertility of Soils, 2015, 51(4): 403-415.
    [4] de ZELICOURT A, AL-YOUSIF M, HIRT H. Rhizosphere microbes as essential partners for plant stress tolerance[J]. Molecular Plant, 2013, 6(2): 242-245.
    [5] BERENDSEN RL, PIETERSE CMJ, BAKKER PAHM. The rhizosphere microbiome and plant health[J]. Trends in Plant Science, 2012, 17(8): 478-486.
    [6] 王建武, 冯远娇, 聂呈荣. 转基因作物的生态风险评价: 以转Bt基因玉米为例[M]. 北京: 化学工业出版社, 2010: 116. WANG JW, FENG YJ, NIE CR. Ecological Risk Assessment of Transgenic Crops: a Case Study of Transgenic bt Maize[M]. Beijing: Chemical Industry Press, 2010: 116 (in Chinese).
    [7] 杨永华. 转基因作物对土壤微生物群落的影响及主要研究策略[J]. 农业生物技术学报, 2011, 19(1): 1-8. YANG YH. Advances on the effects of genetically modified crops on soil microbial community and main countermeasures of their approaches[J]. Journal of Agricultural Biotechnology, 2011, 19(1): 1-8 (in Chinese).
    [8] MOVAHEDI A, WEI H, ALHASSAN AR, DZINYELA R, WANG P, SUN WB, ZHUGE Q, XU C. Evaluation of the ecological environment affected by Cry1Ah1 in poplar[J]. Life, 2022, 12(11): 1830.
    [9] 周学永, 刘宁, 赵曼, 李河, 周浪, 唐宗文, 曹斐, 李巍. 转Bt基因作物释放杀虫晶体蛋白对土壤生态安全的影响[J]. 遗传, 2011, 33(5): 443-448. ZHOU XY, LIU N, ZHAO M, LI H, ZHOU L, TANG ZW, CAO F, LI W. Advances in effects of insecticidal crystal proteins released from transgenic Bt crops on soil ecology[J]. Hereditas, 2011, 33(5): 443-448 (in Chinese).
    [10] LI P, DONG JY, YANG SF, BAI L, WANG JB, WU GG, WU X, YAO QH, TANG XM. Impact of β-carotene transgenic rice with four synthetic genes on rhizosphere enzyme activities and bacterial communities at different growth stages[J]. European Journal of Soil Biology, 2014, 65: 40-46.
    [11] LI P, YE SF, CHEN J, WANG LY, LI YJ, GE L, WU GG, SONG LL, WANG C, SUN Y, WANG JB, PAN AH, QUAN ZX, WU YF. Combined metagenomic and metabolomic analyses reveal that Bt rice planting alters soil C-N metabolism[J]. ISME Communications, 2023, 3: 4.
    [12] 农业农村部. 中华人民共和国农业部令(2022年第2号, 农业农村部关于修改〈农业转基因生物安全评价管理办法〉等规章的决定[Z]. 2022-01-21.
    [13] 农业农村部, 农业部科技教育司. 农业转基因生物安全管理条例[Z]. 2017-10-7.
    [14] LEFF JW, del TREDICI P, FRIEDMAN WE, FIERER N. Spatial structuring of bacterial communities within individual Ginkgo biloba trees[J]. Environmental Microbiology, 2015, 17(7): 2352-2361.
    [15] COLEMAN-DERR D, DESGARENNES D, FONSECA-GARCIA C, GROSS S, CLINGENPEEL S, WOYKE T, NORTH G, VISEL A, PARTIDA- MARTINEZ LP, TRINGE SG. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J]. The New Phytologist, 2016, 209(2): 798-811.
    [16] MATSUMOTO H, FAN XY, WANG Y, KUSSTATSCHER P, DUAN J, WU SL, CHEN SL, QIAO K, WANG YL, MA B, ZHU GN, HASHIDOKO Y, BERG G, CERNAVA T, WANG MC. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7: 60-72.
    [17] AHMAD GANIE S, BHAT JA, DEVOTO A. The influence of endophytes on rice fitness under environmental stresses[J]. Plant Molecular Biology, 2022, 109(4): 447-467.
    [18] LI YH, HALLERMAN EM, LIU QS, WU KM, PENG YF. The development and status of Bt rice in China[J]. Plant Biotechnology Journal, 2016, 14(3): 839-848.
    [19] 段发平, 梁承邺, 黎垣庆. Bar基因和转Bar基因作物的研究进展[J]. 广西植物, 2001, 21(2): 166-172. DUAN FP, LIANG CY, LI YQ. Research advances of Bar gene and its transgenic crops[J]. Guihaia, 2001, 21(2): 166-172 (in Chinese).
    [20] ZHAO K, REN FF, HAN FT, LIU QW, WU GG, XU Y, ZHANG J, WU X, WANG JB, LI P, SHI W, ZHU H, LV JJ, ZHAO X, TANG XM. Edible safety assessment of genetically modified rice T1C-1 for Sprague Dawley rats through horizontal gene transfer, allergenicity and intestinal microbiota[J]. PLoS One, 2016, 11(10): e0163352.
    [21] 陈晓雯, 林胜, 尤民生, 杨广, 王锋. 转基因水稻对土壤微生物群落结构及功能的影响[J]. 生物安全学报, 2011, 20(2): 151-159. CHEN XW, LIN S, YOU MS, YANG G, WANG F. Effects of transgenic rice on the structure and function of soil microbial communities[J]. Journal of Biosafety, 2011, 20(2): 151-159 (in Chinese).
    [22] 关潇, 吴刚, 王敏. 转Bt基因水稻对土壤微生物群落结构的影响[J]. 湖北农业科学, 2015, 54(5): 1046-1052, 1058. GUAN X, WU G, WANG M. Effects of transgenic Bt rice on the structure of soil microbial community[J]. Hubei Agricultural Sciences, 2015, 54(5): 1046-1052, 1058 (in Chinese).
    [23] LEE ZL, BU NS, CUI J, CHEN XP, XIAO MQ, WANG F, SONG ZP, FANG CM. Effects of long-term cultivation of transgenic Bt rice (Kefeng-6) on soil microbial functioning and C cycling[J]. Scientific Reports, 2017, 7: 4647.
    [24] LI P, XUE Y, SHI JL, PAN AH, TANG XM, MING F. The response of dominant and rare taxa for fungal diversity within different root environments to the cultivation of Bt and conventional cotton varieties[J]. Microbiome, 2018, 6(1): 184.
    [25] 宋亚娜, 陈在杰, 林艳, 胡太蛟, 吴明基, 王锋. 抗虫转基因水稻及其杂交水稻对土壤微生物群落多样性与组成的影响[J]. 中国生态农业学报(中英文), 2024, 32(1): 15-29. SONG YN, CHEN ZJ, LIN Y, HU TJ, WU MJ, WANG F. Effect of insect-resistant transgenic rice and its hybrid combination rice on diversity and composition of soil microbial community[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 15-29 (in Chinese).
    [26] 肖国樱, 袁隆平, 辛世文. 转Bar基因抗除草剂水稻Bar68-1的研究与应用[C]//中国作物学会. 中国作物学会50周年庆祝会暨2011年学术年会论文集, 2011: 8.
    [27] 段发平, 郑枫, 段俊. 转BAR基因水稻的抗性遗传、生理特性和农艺性状研究[J]. 浙江大学学报, 2006, 1: 355-359. DUAN FP, ZHENG F, DUAN J. Research on resistance inheritance, physiological characteristics, and agronomic traits of transgenic rice with BAR gene[J]. Journal of Zhejiang University, 2006, 1: 355-359 (in Chinese).
    [28] 何美丹. 转bar基因水稻及其还田秸秆对土壤微生物的影响[D]. 海口: 海南大学博士学位论文, 2019. HE MD. Effects of bar-transgenic rice and its straw return on soil microorganisms[D].Haikou: Doctoral Dissertation of Hainan University, 2019 (in Chinese).
    [29] 赵笑, 任方方, 王玉炯, 韩芳婷, 刘启文, 吴洋洋, 胡瑞丽, 吴潇, 赵凯, 唐雪明. 转基因水稻T1C-1 Bt Cry1C基因的克隆、表达、纯化和实质等同性研究[J]. 上海农业学报, 2014, 30(5): 21-27. ZHAO X, REN FF, WANG YJ, HAN FT, LIU QW, WU YY, HU RL, WU X, ZHAO K, TANG XM. Cloning, expression, purification and substantial equivalence of Bt Cry1C gene in transgenic rice T1C-1[J]. Acta Agriculturae Shanghai, 2014, 30(5): 21-27 (in Chinese).
    [30] 梁力文. 水稻CCT家族基因OsPRR73OsCO3调控抽穗期的分子机制研究[D]. 武汉: 华中农业大学博士学位论文, 2020. LIANG LW. Study on molecular mechanism of CCT family genes OsPRR73 and OsCO3 regulating heading date in rice[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2020 (in Chinese).
    [31] 华桦. 转基因水稻中Bt蛋白的表达规律及生态适应性研究[D]. 武汉: 华中农业大学硕士学位论文, 2012. HUA H. Study on expression regularity and ecological adaptability of Bt protein in transgenic rice[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2012 (in Chinese).
    [32] DEANGELIS KM, BRODIE EL, DESANTIS TZ, ANDERSEN GL, LINDOW SE, FIRESTONE MK. Selective progressive response of soil microbial community to wild oat roots[J]. The ISME Journal, 2009, 3(2): 168-178.
    [33] CREGGER MA, VEACH AM, YANG ZK, CROUCH MJ, VILGALYS R, TUSKAN GA, SCHADT CW. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome[J]. Microbiome, 2018, 6(1): 31.
    [34] 李玉洁, 葛蕾, 胡聪. 土壤真菌群落和潜在功能对施加外源Bt毒素的响应[J]. 土壤学报, 2024, 61(3): 1-15. LI YJ, GE L, HU C. Response of soil fungal communities and potential functions to the application of exogenous Bt toxins[J]. Journal of Soil Science, 2024, 61(3): 1-15.
    [35] 梁晋刚, 张秀杰. 转基因作物对土壤微生物多样性影响的研究方法[J]. 生物技术通报, 2017, 33(10): 111-116. LIANG JG, ZHANG XJ. Strategies for evaluating the effects of transgenic crops on soil microbial diversity[J]. Biotechnology Bulletin, 2017, 33(10): 111-116 (in Chinese).
    [36] 张旭冬, 肖冰, 张秀杰, 栾颖, 周晓莉, 张正光, 宋新元, 陈红, 梁晋刚. 转基因抗虫玉米CM8101对根际微生物群落功能的影响[J]. 东北农业科学, 2023, 48(3): 48-51. ZHANG XD, XIAO B, ZHANG XJ, LUAN Y, ZHOU XL, ZHANG ZG, SONG XY, CHEN H, LIANG JG. Effect of GM maize CM8101 on functional diversity of rhizosphere microorganisms[J]. Journal of Northeast Agricultural Sciences, 2023, 48(3): 48-51 (in Chinese).
    [37] EDWARDS J, JOHNSON C, SANTOS-MEDELLÍN C, LURIE E, PODISHETTY NK, BHATNAGAR S, EISEN JA, SUNDARESAN V. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(8): E911-E920.
    [38] EMERSON BC, GILLESPIE RG. Phylogenetic analysis of community assembly and structure over space and time[J]. Trends in Ecology & Evolution, 2008, 23(11): 619-630.
    [39] 李小宇, 张春雨, 郭东全, 张淋淋, 尤晴, 董英山, 王永志, 李启云. 双抗夹心ELISA检测转Bar基因抗除草剂大豆[J]. 食品科学, 2016, 37(4): 222-225. LI XY, ZHANG CY, GUO DQ, ZHANG LL, YOU Q, DONG YS, WANG YZ, LI QY. Double-antibody sandwich ELISA for the detection of transgenic Bar gene herbicide-tolerant soybeans[J]. Food Science, 2016, 37(4): 222-225 (in Chinese).
    [40] 赵海泉, 曹珂珂, 王凤娟, 胡子全. bar基因对盆栽小麦根际微生物的影响[J]. 安徽农业大学学报, 2007, 34(1): 1-7. ZHAO HQ, CAO KK, WANG FJ, HU ZQ. Effects of bar-gene on microbial flora in wheat rhizosphere soil[J]. Journal of Anhui Agricultural University, 2007, 34(1): 1-7 (in Chinese).
    [41] 王继华, 曹干, 张木清, 张剑亮, 吕冰, 安康. 转Bar基因甘蔗根际土壤微生物分析[J]. 广东农业科学, 2011, 38(S1): 108-109. WANG JH, CAO G, ZHANG MQ, ZHANG JL, LÜ B, AN K. Microbial analysis of rhizosphere soil of transgenic sugarcane with Bar gene[J]. Guangdong Agricultural Sciences, 2011, 38(S1): 108-109 (in Chinese).
    [42] GRIFFITHS BS, CAUL S, THOMPSON J, BIRCH ANE, SCRIMGEOUR C, ANDERSEN MN, CORTET J, MESSÉAN A, SAUSSE C, LACROIX B, KROGH PH. A comparison of soil microbial community structure, protozoa and nematodes in field plots of conventional and genetically modified maize expressing the Bacillus thuringiens is CryIAb toxin[J]. Plant and Soil, 2005, 275(1): 135-146.
    [43] GRIFFITHS BS, CAUL S, THOMPSON J, BIRCH AN, SCRIMGEOUR C, CORTET J, FOGGO A, HACKETT CA, KROGH PH. Soil microbial and faunal community responses to bt maize and insecticide in two soils[J]. Journal of Environmental Quality, 2006, 35(3): 734-741.
    [44] SHEN RF, CAI H, GONG WH. Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil[J]. Plant and Soil, 2006, 285(1): 149-159.
    [45] SANTOS-MEDELLÍN C, EDWARDS J, LIECHTY Z, NGUYEN B, SUNDARESAN V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes[J]. mBio, 2017, 8(4): e00764-17.
    [46] 张祺玲, 杨宇红, 谭周进, 谢丙炎. 植物内生菌的功能研究进展[J]. 生物技术通报, 2010(7): 28-34. ZHANG QL, YANG YH, TAN ZJ, XIE BY. The progress of researches on endophytic functions in vegetations[J]. Biotechnology Bulletin, 2010(7): 28-34 (in Chinese).
    [47] ABBAS A. 结合土壤微生物组和菌核诱捕策略筛选水稻纹枯病生防因子[D]. 武汉: 华中农业大学硕士学位论文, 2020. ABBAS A. Screening of biocontrol factors for rice sheath blight by combining soil microbiome and bacterial nucleus trapping strategy[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2020 (in Chinese).
    [48] EAKJAMNONG W, KEAWSALONG N, DETHOUP T. Novel ready-to-use dry powder formulation of Talaromyces tratensis KUFA0091 to control dirty panicle disease in rice[J]. Biological Control, 2021, 152: 104454.
    [49] GUPTA S, SRIVASTAVA PK, SINGH RP. Growth promotion and zinc biofortification in lettuce (Lactuca sativa L.) by the application of Talaromyces strain as a biostimulant[J]. Scientia Horticulturae, 2024, 323: 112534.
    [50] 魏娜, 张飞龙. 西藏高原粮油作物曲霉菌污染及菌株产毒力研究[J]. 中国粮油学报, 2024, 39(2): 31-37. WEI N, ZHANG FL. Study on Aspergillus contamination and virulence production of crops in Xizang Plateau[J]. Chinese Journal of Cereals and Oils 2024, 39(2): 31-37.
    [51] 郭玉杰. 丝状真菌天冬氨酸蛋白酶的自激活机制与热稳定性改良研究[D]. 北京: 中国农业科学院博士学位论文, 2019. GUO YJ. Study on self-activation mechanism and thermal stability improvement of filamentous fungus aspartic protease[D]. Beijing: Doctoral Dissertation of Chinese Academy of Agricultural Sciences, 2019 (in Chinese).
    [52] 张芝元. 特定生境中角蛋白降解真菌物种多样性[D]. 贵阳: 贵州大学硕士学位论文, 2018. ZHANG ZY. Species diversity of keratin-degrading fungi in specific habitats[D]. Guiyang: Master’s Thesis of Guizhou University, 2018 (in Chinese).
    相似文献
    引证文献
引用本文

葛蕾,王璐瑶,郭官清,宋丽莉,王翠,汪小福,毛婵娟,李鹏. BtBar基因转化对水稻不同组织生态位微生物群落组成及潜在功能影响[J]. 微生物学报, 2024, 64(5): 1607-1625

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-12-13
  • 最后修改日期:2024-02-22
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-04
文章二维码