葡萄生单轴霉菌围可培养微生物多样性及潜在生防菌研究
作者:
基金项目:

国家公益性行业(农业)科研专项(201203035);国家重点研发计划(2018YFD0201300)


Diversity of culturable microorganisms in pathosphere of Plasmopara viticola and screening of potential biocontrol strains
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】揭示葡萄生单轴霉(Plasmoparaviticola)菌围可培养细菌和真菌的多样性特征,筛选对葡萄霜霉病有较强稳定防治效果的生防菌。【方法】连续两年从我国南北方具有代表性的7个葡萄产区采集葡萄霜霉病叶,镊子夹取经保湿培养获得的新鲜霉层并配制孢子囊悬浮液,采用传统分离培养法,结合形态分类、BOX-PCR指纹图谱分析以及分子鉴定结果,对葡萄生单轴霉菌围的可培养细菌和真菌进行聚类分析;采用菌株及其发酵液与病原菌孢子囊悬浮液等体积混合培养测定其对孢子囊的抑制作用,离体叶片接种法检测该菌株及其发酵液对霜霉病的防治效果。【结果】分离获得了90株细菌和110株真菌,分别归属于8个细菌属和14个真菌属,且相同地区不同葡萄品种葡萄生单轴霉菌围的细菌和真菌在同年处于同一分支。假单胞菌属(Pseudomonas)和枝孢属(Cladosporium)稳定存在于各地区不同品种葡萄霜霉病叶上葡萄生单轴霉菌围;在两年间稳定存在的菌株占比多数在80.0%以上且均具有较高的生防作用;其中,广泛分布的6株枝顶孢属(Acremonium)真菌对葡萄霜霉病的防治效果均较好,最高可达100.0%;防治效果较高的11个菌株的无菌发酵液中,黑曲霉(Aspergillusniger) NX2F、苋楔孢黑粉菌(Thecaphora amaranthi) BJ1G和匍枝根霉(Rhizopus stolonifer) BM1L的无菌发酵液防治效果均为100.0%。【结论】葡萄生单轴霉菌围的可培养细菌和真菌群落主要受地区因素影响,有较高的稳定性和生防作用,揭示了枝顶孢属真菌在我国葡萄主要产区葡萄生单轴霉菌围附生的普遍性,为葡萄霜霉病的防治提供了丰富和宝贵的资源。

    Abstract:

    [Objective] To investigate the diversity of bacteria and fungi in the pathosphere of Plasmopara viticola and screen out the strains with potential biocontrol effects on grape downy mildew. [Methods] The leaves infected by P. viticola were collected from seven representative grape-producing regions in northern and southern China in two consecutive years. The collected leaves were cultured in a humid environment, and the newly growing downy mildew was aseptically picked by forceps to prepare the sporangial suspensions of P. viticola. The strains were isolated by the conventional culture method and identified based on the morphological characteristics, BOX-PCR fingerprints, and molecular sequences. Furthermore, the clustering analysis of different strains was conducted. Sporangial inhibition was tested with equal volumes of strain suspension or fermentation mixed with the sporangial suspension of P. viticola, and the control effects of isolates and their sterile fermentation against grape downy mildew were tested on detached grape leaves. [Results] A total of 90 bacterial strains and 110 fungal strains were isolated, belonging to eight bacterial genera and 14 fungal genera, respectively. The pathosphere of P. viticola in the same province and the same year exhibited similar microbial community composition. Notably, strains of Pseudomonas spp. and Cladosporium spp. exhibited stable populations on grape cultivars collected from different provinces. A majority (over 80.0%) of strains with stable populations in two consecutive years demonstrated significant biocontrol effects against grape downy mildew. Six Acremonium strains with ubiquitous distribution demonstrated the biocontrol effect up to 100.0%. Sterile fermentation of the fungal strains Aspergillus niger NX2F, Thecaphora amaranthi BJ1G, and Rhizopus stolonifer BM1L showed the control effects of 100.0% against grape downy mildew. [Conclusion] The culturable bacterial and fungal communities in the pathosphere of P. viticola were mainly affected by geographical factors in different provinces, and most of the culturable microorganisms presented stable and strong biocontrol effects on grape downy mildew. To the best of our knowledge, it is the first comprehensive report that Acremonium spp. were epibiotic fungi and consistently associated with P. viticola, providing rich and valuable biocontrol resources for grape downy mildew.

    参考文献
    [1] TRIVEDI P, LEACH JE, TRINGE SG, SA T, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18: 607-621.
    [2] BERENDSEN RL, VISMANS G, YU K, SONG Y, de JONGE R, BURGMAN WP, BURMØLLE M, HERSCHEND J, BAKKER PAHM, PIETERSE CMJ. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. The ISME Journal, 2018, 12: 1496-1507.
    [3] LI PD, ZHU ZR, ZHANG YZ, XU JP, WANG HK, WANG ZY, LI HY. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome, 2022, 10(1): 56.
    [4] PARRATT SR, LAINE AL. The role of hyperparasitism in microbial pathogen ecology and evolution[J]. The ISME Journal, 2016, 10(8): 1815-1822.
    [5] BUSBY PE, PEAY KG, NEWCOMBE G. Common foliar fungi of Populus trichocarpa modify Melampsora rust disease severity[J]. New Phytologist, 2016, 209(4): 1681-1692.
    [6] NERVA L, PAGLIARANI C, PUGLIESE M, MONCHIERO M, GONTHIER S, GULLINO ML, GAMBINO G, CHITARRA W. Grapevine phyllosphere community analysis in response to elicitor application against powdery mildew[J]. Microorganisms, 2019, 7(12): 662.
    [7] SHEN HM, SHI XM, RAN LX. Hyperparasitism on Plasmopara viticola by Simplicillium lanosoniveum[J]. PhytoFrontiers™, 2022, 2(2): 101-104.
    [8] 申红妙, 李正楠, 杨佳瑶, 张敏, 冉隆贤. 葡萄生单轴霉重寄生菌F3的鉴定及防治效果测定[J]. 植物保护学报, 2017, 44(4): 643-649. SHEN HM, LI ZN, YANG JY, ZHANG M, RAN LX. Identification of the mycoparasitic strain F3 on Plasmopara viticola and its control effect on grape downy mildew[J]. Journal of Plant Protection, 2017, 44(4): 643-649 (in Chinese).
    [9] MAZZOLA M, FREILICH S. Prospects for biological soilborne disease control: application of indigenous versus synthetic microbiomes[J]. Phytopathology, 2017, 107(3): 256-263.
    [10] ROUXEL M, MESTRE P, COMONT G, LEHMAN BL, SCHILDER A, DELMOTTE F. Phylogenetic and experimental evidence for host-specialized cryptic species in a biotrophic oomycete[J]. New Phytologist, 2013, 197(1): 251-263.
    [11] KING EO, WARD MK, RANEY DE. Two simple media for the demonstration of pyocyanin and fluorescin[J]. Journal of Laboratory and Clinical Medicine, 1954, 44(2): 301-307.
    [12] GARRITY GM, BELL JA, LILBRUN TG. Taxonomic Outline of the Prokaryotes, Bergey’s Manual of Systematic Bacteriology [M]. 2nd Edition. New York: Springer, 2004.
    [13] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. DONG XZ, CAI MY. Handbook of Systematic Identification of Common Bacteria[M]. Beijing: Science Press, 2001 (in Chinese).
    [14] 魏景超. 真菌鉴定手册[M]. 上海: 上海科学技术出版社, 1979. WEI JC. Handbook of Fungal Identification[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1979 (in Chinese).
    [15] 冯广达, 陈美标, 羊宋贞, 朱红惠. 用于PCR扩增的细菌DNA提取方法比较[J]. 华南农业大学学报, 2013, 34(3): 439-442. FENG GD, CHEN MB, YANG SZ, ZHU HH. A comparative study on bacteria DNA extraction methods used for PCR amplification[J]. Journal of South China Agricultural University, 2013, 34(3): 439-442 (in Chinese).
    [16] 吴发红, 黄东益, 黄小龙, 周鑫, 程文杰. 几种真菌DNA提取方法的比较[J]. 中国农学通报, 2009, 25(8): 62-64. WU FH, HUANG DY, HUANG XL, ZHOU X, CHENG WJ. Comparing study on several methods for DNA extraction from endophytic fungi[J]. Chinese Agricultural Science Bulletin, 2009, 25(8): 62-64 (in Chinese).
    [17] 申红妙, 李正楠, 贾招闪, 杨佳瑶, 冉隆贤. 内生枯草芽孢杆菌JL4在葡萄叶上的定殖及其对葡萄霜霉病的防治[J]. 应用生态学报, 2016, 27(12): 4022-4028. SHEN HM, LI ZN, JIA ZS, YANG JY, RAN LX. Colonization of grape leaves by endophytic Bacillus subtilis JL4 and its control of grape downy mildew[J]. Chinese Journal of Applied Ecology, 2016, 27(12): 4022-4028 (in Chinese).
    [18] 中南林学院. 经济林病理学[M]. 北京: 中国林业出版社, 1986. CENTRAL-SOUTH FORESTRY UNIVERSITY. Non-wood Forest Pathology[M]. Beijing: China Forestry Publishing House, 1986 (in Chinese).
    [19] EL-SHARKAWY HHA, ABO-EL-WAFA ATS, IBRAHIM SAA. Biological control agents improve the productivity and induce the resistance against downy mildew of grapevine[J]. Journal of Plant Pathology, 2018, 100: 33-42.
    [20] LAZAZZARA V, VICELLI B, BUESCHL C, PARICH A, PERTOT I, SCHUHMACHER R, PERAZZOLLI M. Trichoderma spp. volatile organic compounds protect grapevine plants by activating defense-related processes against downy mildew[J]. Physiologia Plantarum, 2021, 172(4): 1950-1965.
    [21] ROATTI B, PERAZZOLLI M, GESSLER C, PERTOT I. Abiotic stresses affect Trichoderma harzianum T39-induced resistance to downy mildew in grapevine[J]. Phytopathology, 2013, 103(12): 1227-1234.
    [22] VOGEL CM, POTTHOFF DB, SCHÄFER M, BARANDUN N, VORHOLT JA. Protective role of the Arabidopsis leaf microbiota against a bacterial pathogen[J]. Nature Microbiology, 2021, 6: 1537-1548.
    [23] SOHRABI R, PAASCH BC, LIBER JA, HE SY. Phyllosphere microbiome[J]. Annual Review of Plant Biology, 2023, 74: 539-568.
    [24] LIU H, BRETTELL LE, QIU Z, SINGH BK. Microbiome-mediated stress resistance in plants[J]. Trends in Plant Science, 2020, 25(8): 733-743.
    [25] ASSANTE G, DALLAVALLE S, MALPEZZI L, NASINI G, BURRUANO S, TORTA L. Acremines A−F, novel secondary metabolites produced by a strain of an endophytic Acremonium, isolated from sporangiophores of Plasmopara viticola in grapevine leaves[J]. Tetrahedron, 2005, 61(32): 7686-7692.
    [26] 贾招闪. 葡萄生单轴霉孢子囊致病力恢复及保存方法研究[D]. 保定: 河北农业大学硕士学位论文, 2016. JIA ZS. Recovery of the pathogenicity and the preservation method of sporangia in Plasmopara viticola[D]. Baoding: Master’s T牨慥摳楩敳渠瑯学?嵈???捩漠汁潧杲楩捣慵汬??潲湡潬朠牕慮灩桶獥???ぴ???′???㈠???攠ぃ??????戩爮?孢??嵛′?啝删剒啅?乕体?卅?????佁乎婎传?????佌…偕???伻?佋?卒???传乍?????刻佌?????佂丬????佔?噏??吠佅刬吠??????佈刬?呖呏??????半十?丠呓??????渠瑤敩牳慴捲瑩楢潵湴?扯敮琠睡敮敡湬??楥??捯牦攠浮潡湴極畲浡??楰???楬?扳祰獨獥潲楥搭攠獣??楯??慺湩摮??楢?偣汴慥獲浩潡瀠慯牮愠??椾???楢?癤楯瑰楳捩潳氼愯??椠??椾湴??楬?噡楮瑡椼猯??椠???楥?癬楥湤椠晢敹爠慦??楯?孥?嵣??偣桥礠琼潩瀾慩瑮格漯汩漾朠椼慩 ̄?敩摴極琼支物爾愠湨敹慢???どぺ????????金㈠?????onmental Microbiology, 2014, 16(7): 2329-2340.
    [28] STEINBERG S, GRINBERG M, BEITELMAN M, PEIXOTO J, OREVI T, KASHTAN N. Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging[J]. The ISME Journal, 2021, 15(2): 409-420.
    [29] SINGH P, SANTONI S, WEBER A, THIS P, PÉROS JP. Understanding the phyllosphere microbiome assemblage in grape species (Vitaceae) with amplicon sequence data structures[J]. Scientific Reports, 2019, 9: 14294.
    [30] BAI Y, MÜLLER DB, SRINIVAS G, GARRIDO- OTER R, POTTHOFF E, ROTT M, DOMBROWSKI N, MÜNCH PC, SPAEPEN S, REMUS-EMSERMANN M, HÜTTEL B, MCHARDY AC, VORHOLT JA, SCHULZE-LEFERT P. Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015, 528(7582): 364-369.
    [31] NIU B, PAULSON JN, ZHENG X, KOLTER R. Simplified and representative bacterial community of maize roots[J]. Proceedings of the National Academy of Sciences, 2017, 114(12): E2450-E2459.
    [32] GILBERT JA, van der LELIE D, ZARRAONAINDIA I. Microbial terroir for wine grapes[J]. Proceedings of the National Academy of Sciences, 2014, 111(1): 5-6.
    [33] ARNOLD AE, HERRE EA. Canopy cover and leaf age affect colonization by tropical fungal endophytes: ecological pattern and process in Theobroma cacao (Malvaceae)[J]. Mycologia, 2003, 95(3): 388-398.
    [34] YAO H, SUN X, HE C, MAITRA P, LI XC, GUO LD. Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem[J]. Microbiome, 2019, 7(1): 57.
    [35] LAJOIE G, KEMBEL SW. Host neighborhood shapes bacterial community assembly and specialization on tree species across a latitudinal g
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

史晓梦,申红妙,王亚聪,冉隆贤. 葡萄生单轴霉菌围可培养微生物多样性及潜在生防菌研究[J]. 微生物学报, 2024, 64(5): 1626-1640

复制
分享
文章指标
  • 点击次数:331
  • 下载次数: 618
  • HTML阅读次数: 482
  • 引用次数: 0
历史
  • 收稿日期:2023-12-15
  • 最后修改日期:2024-02-19
  • 在线发布日期: 2024-05-06
  • 出版日期: 2024-05-04
文章二维码