单细胞水平解析土壤固氮鱼腥藻的碳氮固存过程研究进展
作者:
基金项目:

中国科学院战略性先导科技专项(XDA28030102)


Research progress in the mechanisms of carbon and nitrogen sequestration by Anabaena azotica in soil at the single-cell level
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [3]
  • | | |
  • 文章评论
    摘要:

    固氮鱼腥藻作为光能自养型微生物,具备良好的碳氮固存能力。施加固氮鱼腥藻能够提升土壤肥力并减少化肥施用量。然而,解析固氮鱼腥藻在土壤中的碳氮固存机制以及不同菌株固存效率差异仍有待深入研究。因此,从单细胞水平对土壤固氮鱼腥藻菌株进行筛选和碳氮固存过程的研究至关重要。针对固氮鱼腥藻在单细胞水平上发生的复杂而动态的元素变化过程,本研究综述了土壤固氮鱼腥藻碳氮固存过程,并探讨了利用纳米二次离子质谱法与稳定同位素标记结合(nano-secondary ion mass spectrometry-stable isotopic probing, NanoSIMS-SIP)技术和拉曼光谱成像与稳定同位素标记结合(Raman spectroscopy imaging-stable isotopic probing, Raman-SIP)技术解析单细胞水平上的碳氮元素的时空分布的原理、进展与难点。重点关注了单细胞稳定同位素技术定量可视化固氮鱼腥藻碳氮固存的最新技术发展与应用。同时,对该类可视化技术的未来研究进行了展望。本研究对于理解固氮鱼腥藻在土壤中的碳氮固存机制和固氮效率差异具有重要的科学意义,为农业生产中减少化肥使用、提高土壤肥力提供理论依据。

    Abstract:

    Anabaena azotica, as a photoautotrophic microorganism, has good carbon and nitrogen sequestration abilities. The application of A. azotica could improve soil fertility and reduce the application of chemical fertilizers. However, the mechanism of carbon and nitrogen sequestration in soil by A. azotica and the sequestration efficiency of different strains remain to be studied. Therefore, it is important to screen A. azotica strains and probe into the processes of C and N sequestration in soil by the strains at the single-cell level. In view of the complex and dynamic process of element changes in A. azotica at the single-cell level, this study introduced the carbon and nitrogen sequestration process in soil by A. azotica. In addition, we expounded the principle, progress, and difficulties of using nano-secondary ion mass spectrometry combined with stable isotopic probing (NanoSIMS-SIP) and Raman spectroscopy imaging combined with stable isotopic probing (Raman-SIP) to analyze the spatiotemporal distribution of carbon and nitrogen at the single-cell level. This review focuses on the latest technological development and application of single-cell stable isotope technology for quantitative visualization of carbon and nitrogen sequestration in A. azotica. At the same time, future research on the visualization technology is prospected. This review is of great scientific significance for understanding the mechanism of carbon and nitrogen sequestration and the difference in nitrogen fixation efficiency of different A. azotica strains in soil. It provides a theoretical basis for reducing the use of chemical fertilizers and improving soil fertility in agricultural production.

    参考文献
    [1] JIANG MT, DELGADO-BAQUERIZO M, YUAN MM, DING JX, YERGEAU E, ZHOU JZ, CROWTHER TW, LIANG YT. Home-based microbial solution to boost crop growth in low-fertility soil[J]. New Phytologist, 2023, 239(2): 752-765.
    [2] WANG XJ, BEI QC, YANG W, ZHANG H, HAO JL, QIAN L, FENG YC, XIE ZB. Unveiling of active diazotrophs in a flooded rice soil by combination of NanoSIMS and 15N2-DNA-stable isotope probing[J]. Biology and Fertility of Soils, 2020, 56(8): 1189-1199.
    [3] MAYALI X, WEBER PK, NUCCIO E, LIETARD J, SOMOZA M, BLAZEWICZ SJ, PETT-RIDGE J. Chip-SIP: stable isotope probing analyzed with rRNA-targeted microarrays and NanoSIMS[M]// Methods in Molecular Biology. New York, NY: Springer New York, 2019: 71-87.
    [4] MOOSHAMMER M, KITZINGER K, SCHINTLMEISTER A, AHMERKAMP S, NIELSEN JL, NIELSEN PH, WAGNER M. Flow-through stable isotope probing (flow-SIP) minimizes cross-feeding in complex microbial communities[J]. The ISME Journal, 2021, 15(1): 348-353.
    [5] SHANG SS, SONG MH, WANG CM, DOU XM, WANG JX, LIU FF, ZHU CY, WANG SQ. Decrease of nitrogen cycle gene abundance and promotion of soil microbial-N saturation restrain increases in N2O emissions in a temperate forest with long-term nitrogen addition[J]. Chemosphere, 2023, 338: 139378.
    [6] ZHAO XY, ZHU D, TAN J, WANG R, QI GF. Cooperative action of fulvic acid and Bacillus paralicheniformis ferment in regulating soil microbiota and improving soil fertility and plant resistance to bacterial wilt disease[J]. Microbiology Spectrum, 2023, 11(2): e0407922.
    [7] SAMORAJ M, MIRONIUK M, WITEK-KROWIAK A, IZYDORCZYK G, SKRZYPCZAK D, MIKULA K, BAŚLADYŃSKA S, MOUSTAKAS K, CHOJNACKA K. Biochar in environmental friendly fertilizers-prospects of development products and technologies[J]. Chemosphere, 2022, 296: 133975.
    [8] ZHANG JL, SONG XN, WEI H, ZHOU WC, PENG CR, LI DH. Effect of substituting nitrogen fertilizer with nitrogen-fixing cyanobacteria on yield in a double-rice cropping system in southern China[J]. Journal of Applied Phycology, 2021, 33(4): 2221-2232.
    [9] ZHOU YW, BAO JQ, ZHANG DH, LI YJ, LI HS, HE HZ. Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism[J]. Applied Soil Ecology, 2020, 153: 103580.
    [10] CHAURASIA AK, APTE SK. Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential[J]. Applied and Environmental Microbiology, 2011, 77(2): 395-399.
    [11] 周芳, 方仙桃, 高宏. 固氮蓝藻的异形胞研究进展[J]. 安徽农业科学, 2013, 41(2): 524-527.ZHOU F, FANG XT, GAO H. Advances on the heterocysts of the nitrogen-fixing cyanobacteria[J]. Journal of Anhui Agricultural, 2013, 41(2): 524-527 (in Chinese).
    [12] NIEVES-MORIÓN M, FLORES E, WHITEHOUSE MJ, THOMEN A, FOSTER RA. Single-cell measurements of fixation and intercellular exchange of C and N in the filaments of the heterocyst-forming Cyanobacterium Anabaena sp. strain PCC 7120[J]. mBio, 2021, 12(4): e01314-21.
    [13] ZENG XL, ZHANG CC. The making of a heterocyst in cyanobacteria[J]. Annual Review of Microbiology, 2022, 76: 597-618.
    [14] BASELGA-CERVERA B, JACOBSEN KA, FORD DENISON R, TRAVISANO M. Experimental evolution in the cyanobacterium Trichormus variabilis: increases in size and morphological diversity[J]. Evolution; International Journal of Organic Evolution, 2023, 77(5): 1216-1225.
    [15] XING WY, LIU J, ZHANG JY, ZENG XL, ZHANG CC. A proteolytic pathway coordinates cell division and heterocyst differentiation in the Cyanobacterium Anabaena sp. PCC 7120[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(36): e2207963119.
    [16] GODIN JP, FAY LB, HOPFGARTNER G. Liquid chromatography combined with mass spectrometry for 13C isotopic analysis in life science research[J]. Mass Spectrometry Reviews, 2007, 26(6): 751-774.
    [17] 王万洁, 侯兴旺, 刘稷燕, 江桂斌. 传统稳定同位素技术在环境科学领域的应用及研究进展[J]. 环境化学, 2021, 40(12): 3640-3650.WANG WJ, HOU XW, LIU JY, JIANG GB. Application and research progress of traditional stable isotope technology in environmental science[J]. Environmental Chemistry, 2021, 40(12): 3640-3650 (in Chinese).
    [18] 陈子熙, 陈磊, 张卫文. 单细胞尺度下的微生物学研究: 意义与方法[J]. 微生物学报, 2017, 57(6): 920-931.CHEN ZX, CHEN L, ZHANG WW. Microbiology at single-cell scale: significance and approaches[J]. Acta Microbiologica Sinica, 2017, 57(6): 920-931 (in Chinese).
    [19] VIDAL A, KLÖFFEL T, GUIGUE J, ANGST G, STEFFENS M, HOESCHEN C, MUELLER CW. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms[J]. Soil Biology and Biochemistry, 2021, 160: 108347.
    [20] HERRMANN AM, RITZ K, NUNAN N, CLODE PL, PETT-RIDGE J, KILBURN MR, MURPHY DV, O’DONNELL AG, STOCKDALE EA. Nano-scale secondary ion mass spectrometry: a new analytical tool in biogeochemistry and soil ecology: a review article[J]. Soil Biology and Biochemistry, 2007, 39(8): 1835-1850.
    [21] THOMEN A, NAJAFINOBAR N, PENEN F, KAY E, UPADHYAY PP, LI XC, PHAN NTN, MALMBERG P, KLARQVIST M, ANDERSSON S, KURCZY ME, EWING AG. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles[J]. ACS Nano, 2020, 14(4): 4316-4325.
    [22] SCHOFFELEN NJ, MOHR W, FERDELMAN TG, DUERSCHLAG J, LITTMANN S, PLOUG H, KUYPERS MMM. Phosphate availability affects fixed nitrogen transfer from diazotrophs to their epibionts[J]. The ISME Journal, 2019, 13(11): 2701-2713.
    [23] STUART RK, PEDERSON ERA, WEYMAN PD, WEBER PK, RASSMUSSEN U, DUPONT CL. Bidirectional C and N transfer and a potential role for sulfur in an epiphytic diazotrophic mutualism[J]. The ISME Journal, 2020, 14(12): 3068-3078.
    [24] 胡行伟, 张丽梅, 贺纪正. 纳米二次离子质谱技术(NanoSIMS)在微生物生态学研究中的应用[J]. 生态学报, 2013, 33(2): 348-357.HU HW, ZHANG LM, HE JZ. Application of nano-scale secondary ion mass spectrometry to microbial ecology study[J]. Acta Ecologica Sinica, 2013, 33(2): 348-357 (in Chinese).
    [25] LECHENE C, HILLION F, McMAHON G, BENSON D, KLEINFELD AM, KAMPF JP, DISTEL D, LUYTEN Y, BONVENTRE J, HENTSCHEL D, PARK KM, ITO S, SCHWARTZ M, BENICHOU G, SLODZIAN G. High-resolution quantitative imaging of mammalian and bacterial cells using stable isotope mass spectrometry[J]. Journal of Biology, 2006, 5(6): 20.
    [26] POPA R, WEBER PK, PETT-RIDGE J, FINZI JA, FALLON SJ, HUTCHEON ID, NEALSON KH, CAPONE DG. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides[J]. The ISME Journal, 2007, 1(4): 354-360.
    [27] HERRMANN AM, CLODE PL, FLETCHER IR, NUNAN N, STOCKDALE EA, O’DONNELL AG, MURPHY DV. A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2007, 21(1): 29-34.
    [28] EICHORST SA, STRASSER F, WOYKE T, SCHINTLMEISTER A, WAGNER M, WOEBKEN D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils[J]. FEMS Microbiology Ecology, 2015, 91(10): fiv106.
    [29] MUELLER CW, KÖLBL A, HOESCHEN C, HILLION F, HEISTER K, HERRMANN AM, KÖGEL-KNABNER I. Submicron scale imaging of soil organic matter dynamics using NanoSIMS-from single particles to intact aggregates[J]. Organic Geochemistry, 2012, 42(12): 1476-1488.
    [30] SCHWEIZER SA, COLOCHO HURTARTE LC, HÖSCHEN C, KLYSUBUN W, HARRINGTON G, PRIETZEL J. Phosphorus hotspots in pedogenic carbonate coatings determined by zoned microscale arrangement and organo-mineral interactions[J]. Geochimica et Cosmochimica Acta, 2023, 344: 90-102.
    [31] MUSAT N, STRYHANYUK H, BOMBACH P, ADRIAN L, AUDINOT JN, RICHNOW HH. The effect of FISH and CARD-FISH on the isotopic composition of 13C- and 15N-labeled Pseudomonas putida cells measured by nanoSIMS[J]. Systematic and Applied Microbiology, 2014, 37(4): 267-276.
    [32] DEKAS AE, ORPHAN VJ. Identification of diazotrophic microorganisms in marine sediment via fluorescence in situ hybridization coupled to nanoscale secondary ion mass spectrometry (FISH-NanoSIMS)[M]//Research on Nitrification and Related Processes, Part A. Amsterdam: Elsevier, 2011: 281-305.
    [33] HALM H, MUSAT N, LAM P, LANGLOIS R, MUSAT F, PEDUZZI S, LAVIK G, SCHUBERT CJ, SINGHA B, LaROCHE J, KUYPERS MMM. Co-occurrence of denitrification and nitrogen fixation in a meromictic lake, Lake Cadagno (Switzerland)[J]. Environm健??????????奢?乯??????甲愰氰?猬琠愱戱氨攸?椺猠漱琹漴瀵攭?瀹爵漸戮攼摢?刾慛洳愴湝?流楒捁牎潄獉灁攭捇瑏牒潏獓捔潉灄祉?牎攬瘠敂慅汒獔?瑅桌敏?洠效琬愠扃潁汌楁捂?摅祓湅愠浆椬挠?潔晒??楁?卙瑕牋攠灈琬漠捋潌捁捗畏獎?洠畉琬愠湉獖??楓?孎?嵍??华灁效捁瑒爠潎挬栠楇浒楏捓慓??捔琠慈?倬愠牐瑌?????漬氠敍捕畓汁慔爠?愮渠摅??楩潣浩潥汮整挠畣污慲牢?卮瀠敡据瑤爠潮獩捴潲灯祧??㈠ぴ?????づ???????????扮牥?孤?ち嵴??唠?????奧?乴?????娠?佯啬??坩???啧?乢??坴???婡?唠?奲???即畛牊晝愮挠敓?敩湥桮慴湩捦敩摣?剒慥浰慯湲?獳瀬攠挲琰爲漲猬挠漱瀲示?挱漴洹戴椹渮攼摢?眾楛琳栵?猠瑂慁扎汄敁?楁猠潃瑄漬瀠敓?灈牍潉扄楔渠杍?琠潄?浖潏湕楄瑐潏牕?渠楙琬爠潓杔敒湙?慁獎獙楕测椠汈愬琠楒潉湃?慎瑏?戠潈瑈栬?才畕汓歁?愠湎搮?獍楩湣杲汯敢?捡敬氠汩?汥敮癴敩汦孩?嵡???湮愬氠票瑩楧捨愭汲??桯敬浵楴獩瑯牮礠???ひ???????????????????づぴ??戠牯?嬠??嵥?奲??啺?佳噰卨??奥?????婴???婡乴奩???味????剡呬???の??乸?婛???删呆???ぴ??乲?娠????呬?奮?传剓??呥??呥攬愠爲‰搲漱眬渠?琲栺攠?昶永甹漲爹攮猼换敲渾瑛″挶畝爠瑆慉楎湚??慈?湒敔眠?晁氬甠潐牅敔獔挭敒湉捄敇?猠畊瀬瀠牗故獂獅楒漠湐?洬攠瑐桏潐摁?晒漬爠?剁慌浌慏湎?浓楊挬爠潇獕灎敄捅瑒牓潏獎挠潔瀬椠捈?慔湃慈汅祏獎攠獉孄?崠??十捌楓敏湎琠楋晈椬挠?剁敐灏潎牅琠獄??㈠う???????ㄠ??????扴牥?孯?㈠嵃?坡?????????乨?匠????啹?兮??剡散癴楥敲睩?潭映?晲汩畣潨牯敤獥捳敭湩捵敭?猯畩瀾瀠牵敳獩獮楧漠湮?瑮敯捭桥湴楥煲甭敳獣?楬湥?剳慥浣慯湮?獡灲敹挠瑩牯潮猠捭潡灳祳嬠?嵰???灲灯汭楥整摲?卛灊敝挮琠牐潲獯捣潥灥祤?剮敧癳椠敯睦猠?????????の??????????????打牣?孥??嵥?吠?????婥唠?????啤??婴????匠??匠灁敭捥瑲物慣污?洠椲挰爰漹猬挠漱瀰椶挨?椵洩愺朠椶渳朴‵漭昶″栵攰琮攼牢潲挾祛猳琷獝?慗湏摅?癋故李攠瑄愬琠楂癕敒?捗攠汌汃猬?楐湒?瑆睅潒?昭楂汅慂浏敕湔琠潌甬猠?捅祂慏湕潔戠慂捍琬攠版楏慅?扌慅獒攠摔?漬渠?獅灔潔渭瑒慉湄敇潅甠獊?删慓浐慏湒?獁捎慎琠瑁敍爬椠湗杅?慅湒搠?灋栬漠瑓潉汎畇浅楒渠敓獗挮攠湉捤敥?扴祩?????湩浯?攠硯捦椠瑡愠瑮楯潶湥孬?嵣???楯潢捡档楴浥楲捩慡?攠瑧??極潰瀠桡祳猠楡捣慴??捥琠慤????????楨潳攠湩敮爠条攠瑣楯捡獳???????????ち?ㄠ??????????扎牡?孯??嵍??卡????剳?????吮??????坓??????佲???娬唠??????匶??伩?夠???圷?匱????????佛刳?呝??十??删慙洬愠湈?楁济慇朠楗湅本?潃晕?琠桌攬?摗楁癇敎牅獒攠?献琠慓瑩敮獧?潥映?瑥桬敬?晳楴污慢浬敥渠瑩潳畯獴?捰祥愠湰潲扯慢捩瑮敧爠楩慮嬠?嵩??偯牢潩捯?卯偧?????????乡慭湡潮??楩潣?卯敳湰獥楣湴杲???浯慰杹楛湊杝??慃湵摲?卥灮整挠瑏牰潩獮捩潯灮礠??㈠あ???????????????????戠爴?嬺??崴?匴???????″?????佔?呅婎????????????????呎婂?乒假?????剐?剅???潒牌爬攠汊慁瑙椠癚敊?匠?健???卧??剥慲浡慴湩??匠???乳慩湯潬卯??匠?汰楰湲歯獡?楨摥敳渠瑴楯琠祳??浤潹爠灭桩潣汲潯杢祩??扥椠潦捵桮散浴楩獯瑮爠祡??慳湩摮?灬桥礠獣楥潬汬漠杬祥?潥晬?敊湝瘮椠牎潡湴浵敲湥琠慒汥?浩楥捷牳漠才敩獣孲?嵢???卯????漲洰洲田測椠挱愸琨椴漩渺猠??㈱?有特??监??????扝爠?孏??嵎??啂?????塈?乁?奎???夠?乔?????????婌??听?乒…????娻??么??夬??????塊刮??婵?啴?婶??奩?乮???????佡?卡???剰?乣????婣?啰?奣????啥即?呩?????啮即?呯?丠???楴癥敲?瑡牛慊捝欮椠湔杲?浮敤瑳愠扩潮氠楍捩?湲敯瑢睩潯牬歯獧?愬渠搲‰瀱样礬猠椲漵氨漵朩椺挠愴氱″爭攴猲瀴漮渼獢敲猾?眴椱瑝栠楕湅?流椠捒爬漠扙楁慎汏?態献猠故浮扤汯慰杨敹獴?慣琠?猼楳湵杢氾攲?振敳汵汢 ̄氠敦癩數污孴?嵯??偩牮漠捳敷敥摥楴渠杰獯?潡晴?琺栠敲?乳慰瑯楮潳湥慳氠??挠慎搬攠浐礬?潡普?匠捋椠敩湮捰敵獴?漠晡?瑤栠敶?啳湵楡瑬敩摺?却瑩慯瑮攠獯?漠昼??浰放爱椵挼愯?乵数砾畎猼????有?????????灩杬慩摺どの???扡牣?孥??嵡??????????娾?卩?????????剡??剳????奲副?呣?????偝?删佂乩?????????丠??卲??公啩????卦删??噩敬牳猬愠琲椰氲攳??昵甹氨氳礩?愠甲琷漵洭愲琸攳搮??浲椾捛爴漲晝氠畗楁摎楇挠?捑攬氠汈?挠畐汓琬甠牗敁?獇礠獚瑊攬洠孌?崠???渠慍汁祊瑅楄挠慎氬??桕攠流楚献琠牁祤???っづ??????????????????????戠牳?孥??嵲?偳??啰?删???乨????????????????楬捯牧潩晣污畬椠摡楮捤猠?浮敶敩瑲?据敭汥汮?扡楬漠污潰杰祬??扡牴楩摯杮楳湛杊?琮栠敃?杲慲灥?扴礠?癰慩汮楩摯慮琠楩潮渠?慩湯摴?慣灨灮汯楬捯慧瑹椬漠渲‰漲昰?洠椶挴爺漠猲挱愸氭攲′琹攮挼桢湲椾煛甴攳獝?晁潚牅?捔敓汏汐?才楁潔汁潎杆楁捃態氠?愬猠獐慉祓獔孉?嵉???椠潒?猣猲愱礴猻??么攠睐猬?慐湏摐?删敊瘮椠敒睡獭?楮渠??潡汢敬捥甠汩慳牯???敥氠汰畲汯慢物?慧渠摯??敢癡散汴潥灲浩敡渠瑩慮氠??楳潩汢潬来礠????つ????さ??????????????扩牦?嬠??嵡?奥?丬??卷???啥佲?卡????传′?儲?????丨?‰娩夺??娰??丮?????吴攴湝猠潌牉?灈牚漬搠畂捉琠?扆愬猠教摁?????挠潚版牅敎汇愠瑂楘漬渠?摕愠瑑愬?灃牕敉瀠牌漮挠敄猼獳極湢朾′洼支瑳桵潢搾獏?晩潳牯?副慰浥愭湬?獢灥敬捩瑮牧漠獡捰潰灲祯?潣晨??桯椠湰敲獯敢?桮慧渠摰浨慯摳数?灡慴灥攭牳孯?嵵??卬灩敺捩瑮牧漠换桡楣浴楥捲慩??捩瑮愠?偯慭牰瑬?????潩汬攠捣畯汭慭牵?慩湴摩??椠潢浹漠汳敩据畧汬慥爭?卥灬敬挠瑒牡潭獡据漠灳祰???ひ?????べ????㈠?の????扩牣?孬?ぃ嵨?卭婩佳却呲???刲????娠唹刱???区?′儲申愹渭琲椲昴椶挮愼瑢楲漾湛?漵晝?態捁瑒楌癏攠?椬渠杄版敉摌楌敏湎琠獁?椬渠?獉畄灄灈潁獎楔瑁漠牓椬攠獓?扎祇??呓?刮愠浍慯湮?獴灯敲捩瑮牧漠獯捦漠灭祩季?嵯???牬甠杰?呯整獥瑯業湥朠?慹湮摡??湣慳氠祵獳楩獮???ち??????????ㄠ????????扰牲?孢??嵧?削佝??佊?奵??????剦??乩??????剮?佣味?倠?‰?搳攬渠琱椶昨椴挩愺琠楥漲渰′漲昰‰瀳栴愱爮洼慢捲放畛琴椶捝愠氘?琬愠戢氟攬琠獕?戬礠?删愦洮愠湕?珞烉旼捉琱爨澮猟捩演灶礭?憔渨摛?捝栮攠涮漟浩敦璥爬椠挲猰嬲?崬??吰愨氶愩渺琠愱?‵㈱????′???????????????HE L, ZHANG CL. Advances in the application of Raman microspectroscopy in microbe research[J]. Acta Microbiologica Sinica, 2020, 60(6): 1051-1062 (in Chinese).
    [47] NI HW, JING XY, XIAO X, ZHANG N, WANG XY, SUI YY, SUN B, LIANG YT. Microbial metabolism and necromass mediated fertilization effect on soil organic carbon after long-term community incubation in different climates[J]. The ISME Journal, 2021, 15(9): 2561-2573.
    [48] LIU CY, JIANG MT, YUAN MM, WANG ET, BAI Y, CROWTHER TW, ZHOU JZ, MA ZY, ZHANG L, WANG Y, DING JX, LIU WX, SUN B, SHEN RF, ZHANG JB, LIANG YT. Root microbiota confers rice resistance to aluminium toxicity and phosphorus deficiency in acidic soils[J]. Nature Food, 2023, 4(10): 912-924.
    [49] PARLATAN U, BAŞAR G, BAŞAR G. Sorting of micron-sized particles using holographic optical Raman tweezers in aqueous medium[J]. Journal of Modern Optics, 2019, 66(2): 228-234.
    [50] XIE CG, CHEN D, LI YQ. Raman sorting and identification of single living micro-organisms with optical tweezers[J]. Optics Letters, 2005, 30(14): 1800-1802.
    [51] TÄUBER S, SCHMITZ J, BLÖBAUM L, FANTE N, STEINHOFF H, GRÜNBERGER A. How to perform a microfluidic cultivation experiment—a guideline to success[J]. Biosensors, 2021, 11(12): 485.
    [52] KONG LB, ZHANG PF, SETLOW P, LI YQ. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers[J]. Analytical Chemistry, 2010, 82(9): 3840-3847.
    [53] JING XY, GOU HL, GONG YH, SU XL, XU L, JI YT, SONG YZ, THOMPSON IP, XU J, HUANG WE. Raman-activated cell sorting and metagenomic sequencing revealing carbon-fixing bacteria in the ocean[J]. Environmental Microbiology, 2018, 20(6): 2241-2255.
    [54] ASLAN KAMIL M, FOURNEAUX C, YILMAZ A, STAVROS S, PARMENTIER R, PALDI A, GONIN-GIRAUD S, de MELLO AJ, GANDRILLON O. An image-guided microfluidic system for single-cell lineage tracking[J]. PLoS One, 2023, 18(8): e0288655.
    [55] LI JB, ZHANG DY, LI B, LUO CL, ZHANG G. Identifying the active phenanthrene degraders and characterizing their metabolic activities at the single-cell level by the combination of magnetic- nanoparticle-mediated isolation, stable-isotope probing, and Raman-activated cell sorting (MMI-SIP-RACS)[J]. Environmental Science & Technology, 2022, 56(4): 2289-2299.
    [56] LI HZ, YANG K, LIAO H, LASSEN SB, SU JQ, ZHANG X, CUI L, ZHU YG. Active antibiotic resistome in soils unraveled by single-cell isotope probing and targeted metagenomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2201473119.
    [57] CAO WW, CAI YF, BAO ZH, WANG SW, YAN XY, JIA ZJ. Methanotrophy alleviates nitrogen constraint of carbon turnover by rice root-associated microbiomes[J]. Frontiers in Microbiology, 2022, 13: 885087.
    [58] CUI L, YANG K, LI HZ, ZHANG H, SU JQ, PARASKEVAIDI M, MARTIN FL, REN B, ZHU YG. Functional single-cell approach to probing nitrogen-fixing bacteria in soil communities by resonance Raman spectroscopy with 15N2 labeling[J]. Analytical Chemistry, 2018, 90(8): 5082-5089.
    [59] SUN YF, LI SS, SI Y, NIU YF, YANG JZ, LIU YH, DONG L, ZHU
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈同,赵远,彭成荣,荆晓艳,梁玉婷. 单细胞水平解析土壤固氮鱼腥藻的碳氮固存过程研究进展[J]. 微生物学报, 2024, 64(6): 1721-1734

复制
分享
文章指标
  • 点击次数:271
  • 下载次数: 707
  • HTML阅读次数: 363
  • 引用次数: 0
历史
  • 收稿日期:2023-10-09
  • 最后修改日期:2023-12-13
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码