内蒙古砒砂岩地区沙棘根际和非根际土壤理化性质及真菌群落特征
作者:
基金项目:

陕西省重点研发计划(2023-YBNY-250);榆林学院博士科研启动基金(20GK19)


Physicochemical properties and fungal community characteristics of rhizosphere and non-rhizosphere soils of Hippophae rhamnoides in Pisha sandstone area of Inner Mongolia
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [77]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】以内蒙古砒砂岩区沙棘林为研究对象,探究不同年限沙棘林根际土壤与非根际土壤的理化性质差异,同时分析真菌群落结构差异,并进一步探究两者之间的相互关系。【方法】在内蒙古鄂尔多斯砒砂岩区采集了不同年限沙棘林根际与非根际共计12个土壤样品,采用传统土壤环境指标测定方法测定土壤理化性质,利用高通量测序方法分析土壤真菌群落结构特征,同时分析两者之间的相互关系。【结果】根际土壤全氮、碱解氮、速效钾、有机质和电导率显著高于非根际土壤(P<0.05),随着种植年限的增长,土壤含水率显著增加(P<0.05)。根际土壤群落丰富度和多样性整体高于非根际。子囊菌门(Ascomycota)、被孢霉门(Mortierellomycota)为共有优势菌门;被孢霉属(Mortierella)、青霉菌属(Penicillium)、曲霉菌属(Aspergillus)为共有优势菌属。非根际真菌群落的关键类群是被孢霉属(Mortierella),根际真菌群落的关键类群是赤霉菌属(Gibberella)。冗余分析表明,土壤有机质是影响土壤真菌群落分布的关键因素。被孢霉属(Mortierella)与有机质、碱解氮和全钾之间具有显著相关性(P<0.05);赤霉菌属(Gibberella)与碱解氮、有机质和电导率之间具有显著相关性(P<0.05)。【结论】内蒙古砒砂岩沙棘林种植提高了根际土壤养分和真菌群落的丰富度,促进了土壤生态环境的稳定性。沙棘的种植也提高了该种植地的土壤含水率,促进水土保持,有助于该地区的生态恢复和建设。本研究不仅为该地区的生物多样性保护提供理论依据,更为促进沙棘林生态恢复效果和可持续管理提供科学依据和数据支持。

    Abstract:

    [Objective] To compare the physicochemical properties and fungal community characteristics between rhizosphere soil and non-rhizosphere soil of Hippophae rhamnoides growing for different years in Pisha sandstone area of Inner Mongolia. [Methods] A total of 12 rhizosphere and non-rhizosphere soil samples were collected from the Pisha sandstone area of Ordos. Chemical methods were used to analyze soil physicochemical properties, and the fungal community composition in soil was analyzed by high-throughput sequencing. The correlations between fungal community characteristics and soil properties were analyzed. [Results] Total nitrogen (TN), available nitrogen (AN), available potassium (AK), organic matter (OM), and electrical conductivity (EC) of rhizosphere soil were higher than those of non-rhizosphere soil (P<0.05). Soil moisture content (SMC) increased as the planting years increased (P<0.05). The fungal richness and diversity in rhizosphere soil were higher than those in non-rhizosphere. Ascomycota and Mortierellomycota were the common dominant phyla in rhizosphere soil and non-rhizosphere soil, and Mortierella, Penicillium, and Aspergillus were the common dominant genera. The key fungal groups in non-rhizosphere soil and rhizosphere soil were Mortierella and Gibberella, respectively. The redundancy analysis showed that OM was a key soil factor affecting the soil fungal distribution. Mortierella was correlated with OM, AN, and total potassium (TK) (P<0.05). Gibberella was correlated with AN, OM, and EC (P<0.05). [Conclusion] The planting of H. rhamnoides in Pisha sandstone area of Inner Mongolia increases the nutrients and fungal richness in the rhizosphere soil, improving the stability of the soil environment. Moreover, the cultivation of H. rhamnoides increases the soil moisture, improving soil and water conservation and contributing to the ecological restoration. This study provides a theoretical basis for biodiversity conservation in the study area as well as for the ecological restoration and sustainable management of H. rhamnoides shrubland.

    参考文献
    [1] 何京丽, 殷丽强, 郭建英, 韩利兵, 梁月, 李锦荣, 岳征文. 砒砂岩地区沙棘生态工程的土壤修复效果分析[J]. 国际沙棘研究与开发, 2013, 11(3): 19-23.HE JL, YIN LQ, GUO JY, HAN LB, LIANG Y, LI JR, YUE ZW. The effectiveness analysis of soil remediation after the seabuckthorn ecological engineering in arsenic sandstone areas[J]. The Global Seabuckthorn Research and Development, 2013, 11(3): 19-23 (in Chinese).
    [2] 刘瑞霞. 晋陕蒙砒砂岩区十大孔兑水土流失治理浅析[J]. 内蒙古水利, 2013(6): 68-69.LIU RX. Analysis on soil erosion control of ten caves in the Arisha sandstone area of Shanxi, Shaanxi and Mongolia[J]. Inner Mongolia Water Resources, 2013(6): 68-69 (in Chinese).
    [3] 王俊峰, 薛顺康, 高峰. 裸露砒砂岩地区沙棘治理成效、经验及发展战略问题[J]. 沙棘, 2002(1): 1-4.WANG JF, XUE SK, GAO F. Issues on effectiveness, experience and development strategy of seabuckthorn management in exposed Pisha sandstone area[J]. Seabuckthorn, 2002(1): 1-4 (in Chinese).
    [4] 袁勤, 崔向新, 乔荣. 砒砂岩区不同人工林对土壤理化性质的影响[J]. 北方园艺, 2013(18): 52-55.YUAN Q, CUI XX, QIAO R. Effect of different artificial forest plantations on soil physical and chemical properties of sandstone areas[J]. Northern Horticulture, 2013(18): 52-55 (in Chinese).
    [5] 赵国际. 内蒙古砒砂岩地区水土流失规律研究[J]. 水土保持研究, 2001, 8(4): 158-160.ZHAO GJ. Research on the laws of soil and water loss in sand rock region, inner Mongolia[J]. Research of Soil and Water Conservation, 2001, 8(4): 158-160 (in Chinese).
    [6] CHEN M, ZHANG X, LI M, ZHANG JJ, CAO Y. Climate-growth pattern of Pinus tabulaeformis plantations and their resilience to drought events in the Loess Plateau[J]. Forest Ecology and Management, 2021, 499: 119642.
    [7] 周文洁, 魏天兴, 刘广全, 朱清科. 陕北典型退耕地沙棘群落与土壤因子的耦合关系[J]. 中国水土保持科学, 2020, 18(2): 1-9.ZHOU WJ, WEI TX, LIU GQ, ZHU QK. Coupling relationship between Hippophae rhamnoides community and soil factor in typical returning farmland to forest area in northern Shaanxi Province[J]. Science of Soil and Water Conservation, 2020, 18(2): 1-9 (in Chinese).
    [8] 刘晓宇, 郭月峰, 姚云峰, 刘璐, 祁伟. 砒砂岩区不同留茬高度及坡向下沙棘根系分形特征[J]. 生态环境学报, 2021, 30(1): 100-107.LIU XY, GUO YF, YAO YF, LIU L, QI W. Fractal features of Hippophae rhamnoides roots under different stubble height and slopes in soft sandstone area[J]. Ecology and Environmental Sciences, 2021, 30(1): 100-107 (in Chinese).
    [9] 杨方社, 李怀恩, 曹明明, 杨寅群. 小型人工沙棘林对砒砂岩沟道土壤有机质与水分的影响[J]. 干旱区资源与环境, 2011, 25(9): 110-115.YANG FS, LI HE, CAO MM, YANG YQ. Effects of small-scale artificial seabuckthorn forest on soil organic matter and soil moisture in the soft rock region gully[J]. Journal of Arid Land Resources and Environment, 2011, 25(9): 110-115 (in Chinese).
    [10] 郭月峰, 祁伟, 姚云峰, 王鑫. 留茬高度对砒砂岩区沙棘生理特征的影响[J]. 生态环境学报, 2020, 29(6): 1116-1122.GUO YF, QI W, YAO YF, WANG X. Effect of stubble height on the physiological characteristics of Hippophae rhamnoides in the sandstone region[J]. Ecology and Environmental Sciences, 2020, 29(6): 1116-1122 (in Chinese).
    [11] 李林山, 王梓瑜, 白慧慧, 张凯煜, 刘米利, 史建国, 段义忠. 毛乌素沙地4种不同植物根际土壤细菌群落结构和多样性特征[J]. 干旱区资源与环境, 2024, 38(2): 142-149.LI LS, WANG ZY, BAI HH, ZHANG KY, LIU ML, SHI JG, DUAN YZ. Structure and diversity of bacterial communities in rhizosphere soil of four plant species in Mu Us Sandy Land[J]. Journal of Arid Land Resources and Environment, 2024, 38(2): 142-149 (in Chinese).
    [12] 刘旻霞, 李博文, 孙瑞弟, 张娅娅, 宋佳颖, 张国娟, 徐璐, 穆若兰. 高寒草甸黄帚橐吾种群根际/非根际土壤可培养微生物群落特征[J]. 生态学报, 2021, 41(12): 4853-4863.LIU MX, LI BW, SUN RD, ZHANG YY, SONG JY, ZHANG GJ, XU L, MU RL. Characteristics of culturable microbial communities in rhizosphere/ non-rhizosphere soil of Ligularia virgaurea in alpine meadow elevation gradient[J]. Acta Ecologica Sinica, 2021, 41(12): 4853-4863 (in Chinese).
    [13] 马志良, 赵文强, 刘美, 刘庆. 增温对高寒灌丛根际和非根际土壤微生物生物量碳氮的影响[J]. 应用生态学报, 2019, 30(6): 1893-1900.MA ZL, ZHAO WQ, LIU M, LIU Q. Effects of warming on microbial biomass carbon and nitrogen in the rhizosphere and bulk soil in an alpine scrub ecosystem[J]. Chinese Journal of Applied Ecology, 2019, 30(6): 1893-1900 (in Chinese).
    [14] XIA ZW, BAI E, WANG QK, GAO DC, ZHOU JD, JIANG P, WU JB. Biogeographic distribution patterns of bacteria in typical Chinese forest soils[J]. Frontiers in Microbiology, 2016, 7: 1106.
    [15] MENGUAL C, SCHOEBITZ M, AZCÓN R, ROLDÁN A. Microbial inoculants and organic amendment improves plant establishment and soil rehabilitation under semiarid conditions[J]. Journal of Environmental Management, 2014, 134: 1-7.
    [16] SAETRE P, STARK JM. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species[J]. Oecologia, 2005, 142(2): 247-260.
    [17] GRIFFITHS BS, KUAN HL, RITZ K, GLOVER LA, McCAIG AE, FENWICK C. The relationship between microbial community structure and functional stability, tested experimentally in an upland pasture soil[J]. Microbial Ecology, 2004, 47(1): 104-113.
    [18] CHEN J, NAN J, XU DL, MO L, ZHENG YX, CHAO LM, QU HT, GUO YQ, LI FS, BAO YY. Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions[J]. CATENA, 2020, 194: 104779.
    [19] BI YL, XIAO L, SUN JH. An arbuscular mycorrhizal fungus ameliorates plant growth and hormones after moderate root damage due to simulated coal mining subsidence: a microcosm study[J]. Environmental Science and Pollution Research, 2019, 26(11): 11053-11061.
    [20] JI CN, HUANG J, YU HC, TIAN Y, RAO XZ, ZHANG X. Do the reclaimed fungal communities succeed toward the original structure in eco-fragile regions of coal mining disturbances? A case study in North China loess-aeolian sand area[J]. Frontiers in Microbiology, 2022, 13: 770715.
    [21] ZHANG ZY, QIANG FF, LIU GQ, LIU CH, AI N. Distribution characteristics of soil microbial communities and their responses to environmental factors in the sea buckthorn forest in the water-wind erosion crisscross region[J]. Frontiers in Microbiology, 2023, 13: 1098952.
    [22] 黄沛, 张雷一, 纪署光, 李卫, 姚斌, 郑广, 李昭. 喀斯特石漠化区林草间作对土壤养分及微生物数量的影响[J]. 草业科学, 2024. http://kns.cnki.net/kcms/ detail/62.1069.s.20240304.1008.002.html.HUANG P, ZHANG LY, JI SG, LI W, YAO B, ZHENG G, LI Z. Effects of forest and grassland intercropping on soil nutrients and microbial population in karst rocky desertification area[J]. Pratacultural Science, 2024. http://kns.cnki.net/kcms/ detail/62.1069.s.20240304.1008.002.html (in Chinese).
    [23] MA HK, BAI GY, SUN Y, KOSTENKO O, ZHU X, LIN S, RUAN WB, ZHAO NX, BEZEMER TM. Opposing effects of nitrogen and water addition on soil bacterial and fungal communities in the Inner Mongolia steppe: a field experiment[J]. Applied Soil Ecology, 2016, 108: 128-135.
    [24] SARTO MVM, BORGES WLB, BASSEGIO D, PIRES CAB, RICE CW, ROSOLEM CA. Soil microbial community, enzyme activity, C and N stocks and soil aggregation as affected by land use and soil depth in a tropical climate region of Brazil[J]. Archives of Microbiology, 2020, 202(10): 2809-2824.
    [25] 徐林芳, 米媛婷, 柳兰洲, 温璐, 李永宏, 许继飞. 内蒙古不同类型草原土壤真菌群落结构及其影响因子的研究[J]. 草地学报, 2023, 31(7): 1977-1987.XU LF, MI YT, LIU LZ, WEN L, LI YH, XU JF. Study on the structure and driving factors of soil fungal community in different grassland types in inner Mongolia[J]. Acta Agrestia Sinica, 2023, 31(7): 1977-1987 (in Chinese).
    [26] 王誉陶, 李建平, 井乐, 张翼, 张娟. 模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响[J]. 生态学报, 2020, 40(5): 1517-1531.WANG YT, LI JP, JING L, ZHANG Y, ZHANG J. Effects of different precipitation treatments on soil ecological chemistry and microbial diversity in the Loess Plateau[J]. Acta Ecologica Sinica, 2020, 40(5): 1517-1531 (in Chinese).
    [27] 代光辉, 李根前, 李甜江, 李孙玲, 肖智勇. 水分条件对中国沙棘生长及种群稳定性的影响[J]. 西北林学院学报, 2011, 26(2): 1-8.DAI GH, LI GQ, LI TJ, LI SL, XIAO ZY. Effects of water conditions on the growth and population stability of Hippophae rhamnoides subsp. sinensis[J]. Journal of Northwest Forestry University, 2011, 26(2): 1-8 (in Chinese).
    [28] 闵梓骁, 张建新, 范文波, 杨海梅, 乔长录, 许忠宇. 不同立地条件下沙棘土壤水分分布特征及动态生长研究[J]. 水土保持学报, 2022, 36(4): 204-210.MIN ZX, ZHANG JX, FAN WB, YANG HM, QIAO CL, XU ZY. Soil moisture distribution and dynamic growth of Hippophae rhamnoides under different site conditions[J]. Journal of Soil and Water Conservation, 2022, 36(4): 204-210 (in Chinese).
    [29] 强大宏, 艾宁, 刘长海, 刘广全, 李阳, 强方方, 邵颖. 煤矿复垦区沙棘人工林土壤水分时空分布特征研究[J]. 灌溉排水学报, 2019, 38(9): 82-87.QIANG DH, AI N, LIU CH, LIU GQ, LI Y, QIANG FF, SHAO Y. Temporal and spatial distribution characteristics of soil moisture in seabuckthorn plantations in coal mine reclamation area[J]. Journal of Irrigation and Drainage, 2019, 38(9): 82-87 (in Chinese).
    [30] 孙成. 砒砂岩区小流域人工林水土保持生态功能及效益研究[D]. 呼和浩特: 内蒙古农业大学硕士学位论文, 2022.SUN C. Research on ecological function and benefit evaluation of soil and water conservation of plantation in small watershed of the feldspathic sandstone region[D]. Hohhot: Master’s Thesis of Inner Mongolia Agricultural University, 2022 (in Chinese).
    [31] 赵满兴, 王俊, 杨帆, 马文全, 白二磊. 黄土丘陵区不同种植年限沙棘人工林土壤可溶性氮组分时空变化特征[J]. 西北林学院学报, 2022, 37(6): 34-39.ZHAO MX, WANG J, YANG F, MA WQ, BAI EL. Spatial distribution characteristics of soil soluble nitrogen component in Hippophae rhamnoides plantations with different stand ages in Loess Hilly Region[J]. Journal of Northwest Forestry University, 2022, 37(6): 34-39 (in Chinese).
    [32] 同晓冬, 杨妮, 秦家凤, 刘广全, 艾宁, 刘长海. 煤矿复垦区不同恢复年限沙棘人工林土壤细菌群落结构与功能预测[J]. 科学技术与工程, 2023, 23(32): 13747-13757.TONG XD, YANG N, QIN JF, LIU GQ, AI N, LIU CH. Soil bacterial community structure and functional prediction of seabuckthorn plantation with different restoration years in coal mine reclamation area[J]. Science Technology and Engineering, 2023, 23(32): 13747-13757 (in Chinese).
    [33] ZHANG L, XU MG, LIU Y, ZHANG FS, HODGE A, FENG G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium[J]. The New Phytologist, 2016, 210(3): 1022-1032.
    [34] 王晓, 毕银丽, 王义, 田野, 李强, 杜昕鹏, 郭芸. 沙棘林密度和丛枝菌根真菌接种对林下植物和土壤性状的影响[J]. 林业科学, 2023, 59(10): 138-149.WANG X, BI YL, WANG Y, TIAN Y, LI Q, DU XP, GUO Y. Effects of planting density of Hippophae rhamnoides and inoculation of AMF on understory vegetation growth and soil improvement[J]. Scientia Silvae Sinicae, 2023, 59(10): 138-149 (in Chinese).
    [35] 张明明, 张情, 樊梦颖, 刘西平. 2种立地条件下沙棘林地土壤中细菌多样性比较[J]. 西北林学院学报, 2020, 35(2): 32-39.ZHANG MM, ZHANG Q, FAN MY, LIU XP. Comparison of bacterial diversity in forest soils of Hippophae rhamnoides growing in two different sites[J]. Journal of Northwest Forestry University, 2020, 35(2): 32-39 (in Chinese).
    [36] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000: 101-103.BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 101-103 (in Chinese).
    [37] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 76-78.Nanjing Institute of Soil Science, Chinese Academy of Sciences. Physical and Chemical Analysis of Soil[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1978: 76-78 (in Chinese).
    [38] 蒲琴, 胡玉福, 李亨伟, 蒋双龙, 彭佳佳, 舒向阳. 高寒草地2种固沙灌木根际土壤碳氮特征[J]. 水土保持学报, 2016, 30(2): 272-276, 282.PU Q, HU YF, LI HW, JIANG SL, PENG JJ, SHU XY. Characteristics of organic carbon and nitrogen in rhizosphere soil under 2 sand-fixation shrub of alpine desertified grassland[J]. Journal of Soil and Water Conservation, 2016, 30(2): 272-276, 282 (in Chinese).
    [39] 陈永成, 李肖, 蔡宜东, 郭志国, 张凡凡, 马春晖. 昆仑山沙区旱作紫花苜蓿根际/非根际土壤理化性质及真菌群落特征[J]. 草业科学, 2023, 40(5): 1232-1242.CHEN YC, LI X, CAI YD, GUO ZG, ZHANG FF, MA CH. Physicochemical properties and fungal community characteristics of dry-cultivated alfalfa rhizosphere and non-rhizosphere soils in the sandy area of Kunlun Mountains[J]. Pratacultural Science, 2023, 40(5): 1232-1242 (in Chinese).
    [40] 郭二果, 张树礼, 蔡煜, 李静, 闫文慧, 杨力鹏, 李永胜, 张颖, 张波. 草原区露天煤矿开发对土壤环境质量的影响[J]. 露天采矿技术, 2012, 27(1): 93-97.GUO EG, ZHANG SL, CAI Y, LI J, YAN WH, YANG LP, LI YS, ZHANG Y, ZHANG B. Impact of the open-pit coal mine on soil environment quality in grassland[J]. Opencast Mining Technology, 2012, 27(1): 93-97 (in Chinese).
    [41] 李金辉, 卢鑫, 周志宇, 赵萍, 金茜, 周媛媛. 不同种植年限紫穗槐根际非根际土壤磷组分含量特征[J]. 草业学报, 2014, 23(6): 61-68.LI JH, LU X, ZHOU ZY, ZHAO P, JIN Q, ZHOU YY. Phosphorus contents in the rhizosphere and bulk soil under Amorpha fruticosa established in different years[J]. Acta Prataculturae Sinica, 2014, 23(6): 61-68 (in Chinese).
    [42] 侯杰, 叶功富, 张立华. 林木根际土壤研究进展[J]. 防护林科技, 2006(1): 30-33.HOU J, YE GF, ZHANG LH. Research progress of rhizosphere soil of forest trees[J]. Protection Forest Science and Technology, 2006(1): 30-33 (in Chinese).
    [43] 李茜, 刘松涛, 何俊, 孙兆军, 吕雯. 葡萄园土壤养分变化特征对不同栽培年限的响应[J]. 西南农业学报, 2020, 33(7): 1404-1409.LI Q, LIU ST, HE J, SUN ZJ, LÜ W. Response of soil fertility change characteristics to different planting years in vineyard[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1404-1409 (in Chinese).
    [44] 马月婷, 张丽静, 杜明新, 周志宇, 牛得草, 张宝林. 不同种植年限白沙蒿对根际土壤营养元素的影响[J]. 草业科学, 2014, 31(2): 224-231.MA YT, ZHANG LJ, DU MX, ZHOU ZY, NIU DC, ZHANG BL. Effects of different ages Artemisia sphaerocephala on the content of nutrient elements in rhizosphere soil[J]. Pratacultural Science, 2014, 31(2): 224-231 (in Chinese).
    [45] 马云波, 牛聪傑, 许中旗. 不同造林模式对铁尾矿地土壤性质的影响[J]. 水土保持学报, 2015, 29(3): 242-248.MA YB, NIU CJ, XU ZQ. Impacts of different forestation pattern on soil properties of iron tailings[J]. Journal of Soil and Water Conservation, 2015, 29(3): 242-248 (in Chinese).
    [46] 苏永中, 赵哈林, 张铜会. 几种灌木、半灌木对沙地土壤肥力影响机制的研究[J]. 应用生态学报, 2002, 13(7): 802-806.SU YZ, ZHAO HL, ZHANG TH. Influencing mechanism of several shrubs and subshrubs on soil fertility in Keerqin sandy land[J]. Chinese Journal of Applied Ecology, 2002, 13(7): 802-806 (in Chinese).
    [47] 弋良朋, 马健, 李彦. 荒漠盐生植物根际土壤盐分和养分特征[J]. 生态学报, 2007, 27(9): 3565-3571.YI LP, MA J, LI Y. Soil salt and nutrient concentration in the rhizosphere of desert halophytes[J]. Acta Ecologica Sinica, 2007, 27(9): 3565-3571 (in Chinese).
    [48] 张彦东, 白尚斌, 王政权, 王庆成. 落叶松根际土壤磷的有效性研究[J]. 应用生态学报, 2001, 12(1): 31-34.ZHANG YD, BAI SB, WANG ZQ, WANG QC. Soil P availability in larch rhizosphere[J]. Chinese Journal of Applied Ecology, 2001, 12(1): 31-34 (in Chinese).
    [49] 陈永亮, 韩士杰, 周玉梅, 邹春静, 张军辉. 胡桃楸、落叶松纯林及其混交林根际土壤有效磷特性的研究[J]. 应用生态学报, 2002, 13(7): 790-794.CHEN YL, HAN SJ, ZHOU YM, ZOU CJ, ZHANG JH. Characteristics of available P in the rhizosphere soil in pure Juglans mandshurica and Larix gmelinii and their mixed plantation[J]. Chinese Journal of Applied Ecology, 2002, 13(7): 790-794 (in Chinese).
    [50] 马斌, 周志宇, 张彩萍, 李雪瑞. 超旱生灌木根际土壤磷的含量特征[J]. 草业学报, 2005, 14(3): 106-110.MA B, ZHOU ZY, ZHANG CP, LI XR. The character of phosphorus concentrations in rhizosphere soil of super-xerophytic shrubs[J]. Acta Pratacultural Science, 2005, 14(3): 106-110 (in Chinese).
    [51] 向明珠, 李佳君, 黄海梅, 李昌航, 肖纳, 尤业明, 招礼军, 黄雪蔓. 杉木林改造成阔叶林对根际和非根际土壤磷组分和转化的影响[J]. 广西植物, 2024. http://kns.cnki.net/kcms/detail/45.1134.Q.20240306.0743.004.html.XIANG MZ, LI JJ, HUANG HM, LI CH, XIAO N, YOU YM, ZHAO LJ, HUANG XM. Effects of transformation of Chinese fir forest into broad-leaved forest on phosphorus components and transformation in rhizosphere and non-rhizosphere soil[J]. Botany of Guangxi, 2024. http://kns.cnki.net/kcms/detail/45.1134. Q.20240306.0743.004.html (in Chinese).
    [52] 刘军, 丁霞, 张武文. 人工沙棘林对霍林河南露天煤矿排土场边坡土壤肥力的影响[J]. 干旱区资源与环境, 2017, 31(12): 150-154.LIU J, DING X, ZHANG WW. Study on soil fertility of artificial sea-buckthorn woodlands in the waste dump of Huolinhe south-pit mine[J]. Journal of Arid Land Resources and Environment, 2017, 31(12): 150-154 (in Chinese).
    [53] 方瑛, 马任甜, 安韶山, 赵俊峰, 肖礼. 黑岱沟露天煤矿排土场不同植被复垦土壤酶活性及理化性质研究[J]. 环境科学, 2016, 37(3): 1121-1127.FANG Y, MA RT, AN SS, ZHAO JF, XIAO L. Heidaigou opencast coal mine: soil enzyme activities and soil physical and chemical properties under different vegetation restoration[J]. Environmental Science, 2016, 37(3): 1121-1127 (in Chinese).
    [54] 马建军, 李青丰, 张树礼. 沙棘与不同类型植被配置下土壤微生物、养分特征及相关性研究[J]. 干旱区资源与环境, 2007, 21(6): 163-167.MA JJ, LI QF, ZHANG SL. The correlation among soil microorganism and soil nutrient in different types of mixed stands of Hippophae rhamnoides[J]. Journal of Arid Land Resources and Environment, 2007, 21(6): 163-167 (in Chinese).
    [55] 董静, 邢锦城, 温祝桂, 洪立洲, 刘冲, 朱小梅, 赵宝泉, 贺亭亭, 赵小慧. 苏北滩涂盐碱地3种典型盐生植物根际土壤细菌多样性及群落结构分析[J]. 江苏农业科学, 2021, 49(8): 212-218.DONG J, XING JC, WEN ZG, HONG LZ, LIU C, ZHU XM, ZHAO BQ, HE TT, ZHAO XH. Analysis of bacterial diversity and community structure in rhizosphere soil of three typical halophytes in saline-alkali land of northern Jiangsu[J]. Jiangsu Agricultural Sciences, 2021, 49(8): 212-218 (in Chinese).
    [56] 秦燚鹤, 姚鹏伟, 韩秋静, 马静, 张格格, 叶协锋. 不同施肥措施对烟株生长发育及土壤盐分的影响[J]. 中国烟草学报, 2019, 25(1): 67-76.QIN YH, YAO PW, HAN QJ, MA J, ZHANG GG, YE XF. Effects of different fertilizing practices on tobacco plant growth and soil salinity[J]. Acta Tabacaria Sinica, 2019, 25(1): 67-76 (in Chinese).
    [57] 姚世庭, 芦光新, 王军邦, 黄彩霞, 王志慧, 赵丽蓉. 模拟增温对土壤电导率的影响[J]. 干旱区研究, 2020, 37(3): 598-606.YAO ST, LU GX, WANG JB, HUANG CX, WANG ZH, ZHAO LR. Effect of simulated warming on soil conductivity[J]. Arid Zone Research, 2020, 37(3): 598-606 (in Chinese).
    [58] 高婷. 沙蒿根际、非根际微生物数量的动态变化研究[J]. 宁夏农林科技, 2006, 47(3): 16, 22.GAO T. Study on the dynamic changes of microorganisms in rhizosphere and non-rhizosphere of Artemisia arenaria[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2006, 47(3): 16, 22 (in Chinese).
    [59] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248.LIU JW, LI XZ, YAO MJ. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2): 231-248 (in Chinese).
    [60] ZAK DR, HOLMES WE, WHITE DC, PEACOCK AD, TILMAN D. Plant diversity, soil microbial communities, and ecosystem function: are there any links?[J]. Ecology, 2003, 84(8): 2042-2050.
    [61] 张淼, 陈裕凤, 陈龙, 黄飘玲, 韦露玲. 不同地区药用植物两面针根际土壤真菌种群多样性差异分析[J]. 生物技术通报, 2020, 36(9): 167-179.ZHANG M, CHEN YF, CHEN L, HUANG PL, WEI LL. Difference analysis of the community diversity of fungi in the rhizosphere soil of Zanthoxylum nitidum (roxb.) DC in different regions[J]. Biotechnology Bulletin, 2020, 36(9): 167-179 (in Chinese).
    [62] 孙倩, 吴宏亮, 陈阜, 康建宏. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11): 2963-2972.SUN Q, WU HL, CHEN F, KANG JH. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11): 2963-2972 (in Chinese).
    [63] CHALLACOMBE JF, HESSE CN, BRAMER LM, McCUE LA, LIPTON M, PURVINE S, NICORA C, GALLEGOS-GRAVES LV, PORRAS-ALFARO A, KUSKE CR. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis[J]. BMC Genomics, 2019, 20(1): 976.
    [64] ZHOU J, JIANG X, ZHOU B, MA M, GUAN D, LI J, CHEN S, CAO F, SHEN D, QIN J. Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in northeast China[J]. Soil Biology and Biochemistry, 2016, 95: 135-143.
    [65] 熊涵. 不同海拔对马缨杜鹃土壤真菌、根际真菌和根内生真菌群落结构的影响[D]. 贵阳: 贵州师范大学硕士学位论文, 2021.XIONG H. Effects of different altitudes on community structure of soil fungi, rhizosphere fungi and root endophytic fungi in Rhododendron delavayi franch[D]. Guiyang: Master’s Thesis of Guizhou Normal University, 2021 (in Chinese).
    [66] ROUSK J, BROOKES PC, BÅÅTH E. Fungal and bacterial growth responses to N fertilization and pH in the 150-year ‘Park Grass’ UK grassland experiment[J]. FEMS Microbiology Ecology, 2011, 76(1): 89-99.
    [67] QIAO QH, WANG FR, ZHANG JX, CHEN Y, ZHANG CY, LIU GD, ZHANG H, MA CL, ZHANG J. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage[J]. Scientific Reports, 2017, 7: 3940.
    [68] BAO ZH, MATSUSHITA Y, MORIMOTO S, HOSHINO YT, SUZUKI C, NAGAOKA K, TAKENAKA M, MURAKAMI H, KUROYANAGI Y, URASHIMA Y, SEKIGUCHI H, KUSHIDA A, TOYOTA K, SAITO M, TSUSHIMA S. Decrease in fungal biodiversity along an available phosphorous gradient in arable Andosol soils in Japan[J]. Canadian Journal of Microbiology, 2013, 59(6): 368-373.
    [69] 马垒, 赵文慧, 郭志彬, 王道中, 赵炳梓. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响[J]. 生态学报, 2019, 39(11): 4158-4167.MA L, ZHAO WH, GUO ZB, WANG DZ, ZHAO BZ. Effects of long-term application of phosphorus fertilizer on fungal community diversity, composition, and intraspecific interactions and variation with application rate in a lime concretion black soil[J]. Acta Ecologica Sinica, 2019, 39(11): 4158-4167 (in Chinese).
    [70] 刘宇, 韩淑梅, 宋希强, 丁琼, 王鹏, 赵莹. 不同海拔下海南凤仙花可培养根际真菌和细菌群落的季节性变化[J]. 热带生物学报, 2018, 9(1): 47-53.LIU Y, HAN SM, SONG XQ, DING Q, WANG P, ZHAO Y. Seasonal variation of microbial communities in the rhizosphere of Impatiens Hainanensis(Balsaminaceae) at different altitudes[J]. Journal of Tropical Biology, 2018, 9(1): 47-53 (in Chinese).
    [71] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815. YUE DD, HAN B, ULLAH A, ZHANG XL, YANG XY. Fungi diversity analysis of rhizosphere under drought conditions in cotton[J]. Acta Agronomica Sinica, 2021, 47(9): 1806-1815 (in Chinese).
    [72] ARAÚJO CAS, FERREIRA PC, PUPIN B, DIAS LP, AVALOS J, EDWARDS J, HALLSWORTH JE, RANGEL DEN. Osmotolerance as a determinant of microbial ecology: a study of phylogenetically diverse fungi[J]. Fungal Biology, 2020, 124(5): 273-288.
    [73] WANG D, RUI YC, DING K, CUI XY, HAO YB, TANG L, PANG Z, ZHANG B, ZHOU ST, WANG K, WANG YF. Precipitation drives the biogeographic distribution of soil fungal community in Inner Mongolian temperate grasslands[J]. Journal of Soils and Sediments, 2018, 18(1): 222-228.
    [74] 付莉娇, 李雪琴, 范继辉, 鲁旭阳, 鄢燕. 藏北高寒草原典型植物根际土壤细菌群落结构多样性及根系特征分析[J]. 草地学报, 2022, 30(5): 1131-1140. FU LJ, LI XQ, FAN JH, LU XY, YAN Y. Analysis of rhizosphere soil bacterial community structure diversity and root characteristics of typical plants in alpine steppe of northern Xizang[J]. Acta Agrestia Sinica, 2022, 30(5): 1131-1140 (in Chinese).
    [75] 郭璞, 邢鹏杰, 宋佳, 吴玲玲, 李彬琦, 司滟汲, 李玉, 冀瑞卿. 蒙古栎根系与根区土壤真菌群落组成及与环境因子的关系[J]. 菌物研究, 2022, 20(3): 173-182. GUO P, XING PJ, SONG J, WU LL, LI BQ, SI YJ, LI Y, JI RQ. Fungal community in roots and the root zone of Quercus mongolica and the correlations with the environmental factors[J]. Journal of Fungal Research, 2022, 20(3): 173-182 (in Chinese).
    [76] 邬嘉华, 王立新, 张景慧, 卓义, 武胜男, 王凤歌, 徐智超, 祁瑜, 温璐. 温带典型草原土壤理化性质及微生物量对放牧强度的响应[J]. 草地学报, 2018, 26(4): 832-840. WU JH, WANG LX, ZHANG JH, ZHUO Y, WU SN, WANG FG, XU ZC, QI Y, WEN L. Response of soil properties and microbial biomass to different grazing intensities in temperate typical steppe[J]. Acta Agrestia Sinica, 2018, 26(4): 832-840 (in Chinese).
    [77] 张变华, 靳东升, 张强, 郜春花, 李建华, 卢晋晶, 籍晟煜. 煤矸石填埋区复垦土壤真菌多样性对施肥方式的响应[J]. 干旱区资源与环境, 2020, 34(4): 183-188. ZHANG BH, JIN DS, ZHANG Q, GAO CH, LI JH, LU JJ, JI SY. Response of fungal diversity to fertilization application in reclaimed soil in coal gangue landfill area[J]. Journal of Arid Land Resources and Environment, 2020, 34(4): 183-188 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

孙美美,田丽,乔紫薇,张雪雅,高泽文. 内蒙古砒砂岩地区沙棘根际和非根际土壤理化性质及真菌群落特征[J]. 微生物学报, 2024, 64(6): 1747-1765

复制
分享
文章指标
  • 点击次数:203
  • 下载次数: 415
  • HTML阅读次数: 347
  • 引用次数: 0
历史
  • 收稿日期:2023-12-30
  • 最后修改日期:2024-05-10
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码