黄土-古土壤原核生物群落对古气候变化的响应
作者:
基金项目:

国家自然科学基金(42372288);陕西林业科技创新专项(SXLK2022-06-3);中央高校基本科研业务费专项资金(300102292904)


Response of prokaryotic community in loess-paleosol to paleoclimate change
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】黄土-古土壤序列是记录第四纪气候环境变化的良好载体,其内部的土壤微生物特征是蕴含土壤环境变化的重要信息。由于黄土与古土壤成壤环境的气候差异,微生物群落结构特征可能会有不同的响应,但针对该问题的研究还十分有限。【方法】选择任家坡(R)和九州台(J)两地黄土(RL和JL)-古土壤(RS和JS)序列,运用高通量测序技术和线性判别分析效应大小(linear discriminant analysis effect size, LEfSe)识别土壤原核生物群落结构和类群差异,基于原核生物分类单元功能注释(functional annotation of prokaryotic taxa, FAPROTAX)数据库进行群落功能预测,以及利用Mantel test探讨影响土壤原核生物群落稳定的环境因子。【结果】土壤中碳氮营养物质与气候变化的代用指标磁化率、Rb/Sr变化趋势一致,含量整体表现为古土壤(RS和JS)高,对应的黄土(RL和JL)低,这一特征在任家坡古土壤(RS)中尤为显著;在同一气候时期,九州台较任家坡更为干冷,并且九州台古土壤沉积阶段也受到较强冬季风的影响,使其气候冷干与暖湿转变呈渐变型。原核生物群落结构中酸杆菌门(Acidobacteria)、泉古菌门(Crenarchaeota)、绿弯菌门(Chloroflexi)等具有嗜热嗜温性质的细菌和古菌在任家坡黄土-古土壤(RL和RS)中丰度较高,芽单胞菌门(Gemmatimonadetes)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)、广古菌门(Euryarchaeota)、异常球菌-栖热菌门(Deinococcus-Thermus)等耐旱、适宜极端环境中生存的细菌和古菌在九州台黄土-古土壤中(JL和JS)丰度较高。同时,生命产能、氮、锰、铁、氯元素循环相关功能基因在任家坡古土壤(RS)中表达量最高,而碳、氢、硫元素循环相关功能基因在任家坡黄土(RL)中表达量最高。与任家坡相比,九州台原核生物群落具有物种多样性高、功能种类少的特点。Mantel test分析进一步表明,有机碳(soil organic carbon, SOC)、含水率(soil water content, SWC)、总氮(total nitrogen, TN)和硝态氮(nitrate nitrogen, NO3--N)是影响任家坡原核生物群落和功能稳定的关键环境因子,而TN、SOC、pH值和铵态氮(NH4+-N)是影响九州台原核生物群落和功能稳定的关键环境因子。【结论】在暖湿期,微生物群落分化出更多的功能种类,具有更旺盛的生命活动;在冷干期,微生物群落通过提高物种多样性来完成主要的生命活动功能,通过协同共生维持群落生存和稳定来适应环境胁迫。研究成果对认识气候变化对土壤微生物多样性和功能的影响具有重要意义。

    Abstract:

    [Objective] Loess-paleosol sequence (LPS) is a good carrier recording the changes of Quaternary climate and environment, and the characteristics of soil microorganisms in it indicates important information about the changes of soil environment. Due to the climate difference between loess and paleosoil, the soil microbial community may have different responses in the structural characteristics. The research on this problem, however, is limited. [Methods] In this paper, the loess (RL and JL)-paleosol (RS and JS) sequences in Renjiapo (R) and Jiuzhoutai (J) were selected, and high-throughput sequencing and linear discriminant analysis effect size (LEfSe) were employed to gain insights into the community structure and group differences of soil prokaryotes. Furthermore, functional annotation of prokaryotic taxa (FAPROTAX) was used to predict the community function, and the Mantel test was carried out to identify the environmental factors affecting the community stability of soil prokaryotes. [Results] The carbon and nitrogen in soil showed changes consistent with the magnetic susceptibility and Rb/Sr ratio, the alternative indicators of climate change. The content of carbon and nitrogen was high in the paleosol (RS and JS, especially in RS) and low in the corresponding loess (RL and JL). In the same climate era, Jiuzhoutai was drier and colder than Renjiapo. The paleosol deposition stage in Jiuzhoutai was affected by strong winter monsoon, which ultimately led to the gradual change from the dry-cold to wet-warm climate. In the prokaryotic community, thermophilic or mesophilic bacteria and archaea, such as Acidobacteria, Crenarchaeota, and Chloroflexi, were abundant in RL and RS, while those with tolerance to drought and extreme environments, such as Gemmatimonadetes, Actinobacteria, Firmicutes, Euryarchaeota, and Deinococcus-Thermus, had high abundance in JL and JS. The functional genes related to energy source and nitrogen, manganese, iron, and chlorine cycling had the highest expression levels in RS, while those involved in carbon, hydrogen, and sulfur cycling showed the highest expression levels in RL. The prokaryotic community in Jiuzhoutai had higher species diversity and fewer functional species than that in Renjiapo. Mantel test results indicated that soil organic carbon (SOC), soil water content (SWC), total nitrogen (TN), and nitrate nitrogen (NO3--N) were the key environmental factors influencing the stability and functions of the prokaryotic community in Renjiapo, while the influencing factors in Jiuzhoutai were TN, SOC, pH, and ammonium nitrogen (NH4+-N). [Conclusion] During the warm-humid period, the microbial community differentiated into more functional categories and exhibited more vigorous life activities. When the climate was dry and cold, the microbial community completed the main life activities by improving species diversity and jointly maintaining the community survival and stability to adapt to environmental stress. The findings are of great significance for understanding the impacts of climate change on the diversity and functions of soil microorganisms.

    参考文献
    [1] 杨宇哲, 岳大鹏, 赵景波, 王晓宁, 刘怡婷, 刘蓉. 陕西横山地区L3黄土与S3古土壤元素地球化学特征与环境变化[J]. 地理科学进展, 2023, 42(2): 364-379.YANG YZ, YUE DP, ZHAO JB, WANG XN, LIU YT, LIU R. Characteristics of geochemical weathering of L3 and S3 loess-paleosol section in the Hengshan area, Shaanxi Province[J]. Progress in Geography, 2023, 42(2): 364-379 (in Chinese).
    [2] 赵彩萍. 关中盆地中部黄土-古土壤序列记录的全新世气候变化研究[D]. 西安: 陕西师范大学硕士学位论文, 2012.ZHAO CP. Study on Holocene climate change recorded by loess-paleosol sequence in central Guanzhong Basin[D]. Xi’an: Master’s Thesis of Shaanxi Normal University, 2012 (in Chinese).
    [3] AN ZS. The history and variability of the East Asian paleomonsoon climate[J]. Quaternary Science Reviews, 2000, 19(1/2/3/4/5): 171-187.
    [4] 卢杰. 黄土-古土壤微生物特征及其对气候变化的响应[D]. 西安: 长安大学硕士学位论文, 2022.LU J. Microbial characteristics of loess-paleosol and its response to climate change[D]. Xi’an: Master’s Thesis of Chang’an University, 2022 (in Chinese).
    [5] 吕一凡, 张春霞, 付扬, 吴海斌, 郝青振, 乔彦松, 郭正堂. 最近880 ka以来黄土-古土壤序列粘土矿物和粘粒地球化学特征及东亚夏季风演化[J]. 第四纪研究, 2022, 42(4): 921-938.LÜ YF, ZHANG CX, FU Y, WU HB, HAO QZ, QIAO YS, GUO ZT. Clay mineralogical and geochemical record from a loesspaleosol sequence in Chinese loess-plateau during the past 880 ka and the implication on the East Asian summer monsoon[J]. Quaternary Sciences, 2022, 42(4): 921-938 (in Chinese).
    [6] CHANG C-P. East Asian Monsoon[M]. Singapore: World Scientific, 2004.
    [7] 毛沛妮, 庞奖励, 黄春长, 查小春, 周亚利, 郭永强, 胡慧, 刘涛. 汉江上游黄土常量元素地球化学特征及区域对比[J]. 地理学报, 2017, 72(2): 279-291.MAO PN, PANG JL, HUANG CC, ZHA XC, ZHOU YL, GUO YQ, HU H, LIU T. Chemical weathering characteristics and regional comparative study of the loess deposits in the upper Hanjiang River[J]. Acta Geographica Sinica, 2017, 72(2): 279-291 (in Chinese).
    [8] 王丽艳, 李广雪. 古气候替代性指标的研究现状及应用[J]. 海洋地质与第四纪地质, 2016, 36(4): 153-161.WANG LY, LI GX. Research status and application of paleoclimatic proxies[J]. Marine Geology & Quaternary Geology, 2016, 36(4): 153-161 (in Chinese).
    [9] BALSAM W, JI JF, CHEN J. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility[J]. Earth and Planetary Science Letters, 2004, 223(3/4): 335-348.
    [10] 安芷生, Porter S, Kukla G, 肖举乐. 最近13万年黄土高原季风变迁的磁化率证据[J]. 科学通报, 1990, 35(7): 529-532. AN ZS, Porter S, Kukla G, XIAO JL. Magnetic susceptibility evidence of monsoon changes on the loess plateau over the last 130 000 years[J]. Chinese Science Bulletin, 1990, 35(7): 529-532 (in Chinese).
    [11] 孙东怀, 鹿化煜, David Rea, 孙有斌, 吴胜光. 中国黄土粒度的双峰分布及其古气候意义[J]. 沉积学报, 2000, 18(3): 327-335.SUN DH, LU HY, REA D, SUN YB, WU SG. Bimode grain-size distribution of Chinese loess and its paleoclimate implication[J]. Acta Sedimentologica Sinica, 2000, 18(3): 327-335 (in Chinese).
    [12] 孙玉兵, 谢巧勤. 黄土高原风尘序列的碳酸盐成因及其风化过程[J]. 矿物岩石地球化学通报, 2007, 26(2): 170-175.SUN YB, XIE QQ. Genesis of the carbonate in the loess-paleosol-red clay sequence of the Chinese Loess Plateau and its weathering phases[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(2): 170-175 (in Chinese).
    [13] 赵景波. 黄土地层中的CaCO3与环境[J]. 沉积学报, 1993, 11(1): 136-142.ZHAO JB. CaCO3 and sedimentary environment of loess strata[J]. Acta Sedimentologica Sinica, 1993, 11(1): 136-142 (in Chinese).
    [14] 李徐生, 韩志勇, 杨守业, 陈英勇, 王永波, 杨达源. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174-1184.LI XS, HAN ZY, YANG SY, CHEN YY, WANG YB, YANG DY. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang[J]. Acta Geographica Sinica, 2007, 62(11): 1174-1184 (in Chinese).
    [15] 李绪龙, 张霞, 林春明, 黄舒雅, 李鑫. 常用化学风化指标综述: 应用与展望[J]. 高校地质学报, 2022, 28(1): 51-63.LI XL, ZHANG X, LIN CM, HUANG SY, LI X. Overview of the application and prospect of common chemical weathering indices[J]. Geological Journal of China Universities, 2022, 28(1): 51-63 (in Chinese).
    [16] 刘晶晶, 李金花, 季燕, 靳三玲, 王旭, 刁兆岩, 关潇. 辉河湿地河岸带土壤微生物群落组成与土壤理化关系[J]. 草地学报, 2023, 31(5): 1393-1405.LIU JJ, LI JH, JI Y, JIN SL, WANG X, DIAO ZY, GUAN X. Relationship between soil microbial community composition and soil physicochemical properties in riparian zone of Huihe Wetland[J]. Acta Agrestia Sinica, 2023, 31(5): 1393-1405 (in Chinese).
    [17] LEJON DPH, CHAUSSOD R, RANGER J, RANJARD L. Microbial community structure and density under different tree species in an acid forest soil (Morvan, France)[J]. Microbial Ecology, 2005, 50(4): 614-625.
    [18] GREENWAY M, JENKINS G, POLSON C. Macrophyte zonation in stormwater wetlands: getting it right! A case study from subtropical Australia[J]. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 2007, 56(3): 223-231.
    [19] 季淮, 韩建刚, 李萍萍, 朱咏莉, 郭俨辉, 郝达平, 崔皓. 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 141-150.JI H, HAN JG, LI PP, ZHU YL, GUO YH, HAO DP, CUI H. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(1): 141-150 (in Chinese).
    [20] 韩晓丽, 黄春国, 张芸香, 郭晋平. 文峪河上游河岸带不同植被类型土壤nirS反硝化菌群结构及功能[J]. 生态学报, 2020, 40(6): 1977-1989.HAN XL, HUANG CG, ZHANG YX, GUO JP. nirS-type denitrifiers community composition and function in different riparian vegetation types in upper Wenyuhe Watershed[J]. Acta Ecologica Sinica, 2020, 40(6): 1977-1989 (in Chinese).
    [21] 潘雪莲, 黄晟, 方昊, 徐军, 郭晓峰, 陈旸, 崔益斌. 黄土高原土壤中细菌群落结构多样性的PCR-DGGE分析[J]. 生态与农村环境学报, 2009, 25(3): 39-43, 48.PAN XL, HUANG S, FANG H, XU J, GUO XF, CHEN Y, CUI YB. Diversity of bacterial community structure in soils of Loess Plateau[J]. Journal of Ecology and Rural Environment, 2009, 25(3): 39-43, 48 (in Chinese).
    [22] 彭先芝. 黄土剖面中微生物与有机质的古气候记录: 趋磁细菌对磁化率的贡献及其特征生物标志物研究[D]. 广州: 中国科学院广州地球化学研究所博士学位论文, 2000.PENG XZ. Paleoclimatic information recorded by microbes and organic matter in Chinese loess: studies on the contributions to the magnetic susceptibility of magnetotactic bacteria and the characteristic biomarkers[D]. Guangzhou: Doctoral Dissertation of Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2000 (in Chinese).
    [23] 何帅帅. 干湿环境下黄土地层微生物特征及其地球化学响应[D]. 西安: 长安大学硕士学位论文, 2020.HE SS. Microbial characteristics and geochemical response of loess under dry and wet environment[D]. Xi’an: Master’s Thesis of Changan University, 2020 (in Chinese).
    [24] 喻言, 刘浩, 匡崇婷, 巩梦梦, 董雷, 曹慧. 不同园地土壤细菌亚群的结构与功能分异[J]. 土壤, 2023, 55(5): 1035-1043.YU Y, LIU H, KUANG CT, GONG MM, DONG L, CAO H. Structural and functional differentiation of soil bacterial sub-communities under different gardens[J]. Soils, 2023, 55(5): 1035-1043 (in Chinese).
    [25] 刘永红, 房保柱, 高磊, 李丽, 王爽, 蒋宏忱, 李文均. 巴里坤盐湖退化区土壤微生物群落结构及生态功能分析[J]. 微生物学报, 2022, 62(6): 2053-2073.LIU YH, FANG BZ, GAO L, LI L, WANG S, JIANG HC, LI WJ. Community structure and ecological functions of soil microorganisms in the degraded area of Barkol Lake[J]. Acta Microbiologica Sinica, 2022, 62(6): 2053-2073 (in Chinese).
    [26] 钟融, 王培如, 孙培杰, 林文, 任爱霞, 任永康, 孙敏, 高志强. 长年耕作对北方旱作麦田土壤细菌群落结构及理化性质的影响[J]. 环境科学, 2023, 44(10): 5800-5812.ZHONG R, WANG PR, SUN PJ, LIN W, REN AX, REN YK, SUN M, GAO ZQ. Effects of long-term tillage on soil bacterial community structure and physicochemical properties of dryland wheat fields in northern China[J]. Environmental Science, 2023, 44(10): 5800-5812 (in Chinese).
    [27] SUN YB, AN ZS, CLEMENS SC, BLOEMENDAL J, VANDENBERGHE J. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010, 297, 525-535.
    [28] 毛学刚, 刘秀铭, 赵景波, 王练. 黄土高原西部上新统风成红粘土的微形态特征及其古环境意义[J]. 第四纪研究, 2023, 43(5): 1172-1185.MAO XG, LIU XM, ZHAO JB, WANG L. Micromorphology of Pliocene aeolian red clay in western Chinese Loess Plateau and its paleoenvironmental implication[J]. Quaternary Sciences, 2023, 43(5): 1172-1185 (in Chinese).
    [29] 苟思懿. 晚第四纪中国北方黄土沉积模式及西风-东亚夏季风气候变化集成研究[D]. 兰州: 兰州大学硕士学位论文, 2023.GOU SY. The review of loess sedimentary patterns and westerlies-monsoonal climatic changes in Northern China during late Quaternary[D]. Lanzhou: Master’s Thesis of Lanzhou University, 2023 (in Chinese).
    [30] 邵天杰. 西安东郊黄土含水条件与控制因素研究[D]. 西安: 陕西师范大学硕士学位论文, 2009.SHAO TJ. Study on water-bearing conditions and controlling factors of loess in the eastern suburb of Xi’an[D]. Xi’an: Master’s Thesis of Shaanxi Normal University, 2009 (in Chinese).
    [31] 徐扬, 张冠初, 丁红, 秦斐斐, 张智猛, 戴良香. 土壤类型对花生根际土壤细菌群落多样性和产量的影响[J]. 生物技术通报, 2022, 38(6): 221-234.XU Y, ZHANG GC, DING H, QIN FF, ZHANG ZM, DAI LX. Effects of soil types on bacterial community diversity on the rhizosphere soil of Arachis hypogaea and yield[J]. Biotechnology Bulletin, 2022, 38(6): 221-234 (in Chinese).
    [32] 刘亚军, 汪成钵, 章涛, 叶翠, 储小东, 廖文成, 李荣富, 吴永明. 万年县古稻原产区细菌多样性分析及功能预测[J]. 中国生态农业学报(中英文), 2023. DOI: 10.12357/cjea.20230448.LIU YJ, WANG CB, ZHANGT, YE C, CHU XD, LIAO WC, LI RF, WU YM. Bacterial diversity exploring and functional prediction in ancient rice original-producing regions of Wannian County, China[J]. Chinese Journal of Eco-Agriculture, 2023. DOI: 10.12357/cjea.20230448 (in Chinese).
    [33] 马欣, 罗珠珠, 张耀全, 刘家鹤, 牛伊宁, 蔡立群. 黄土高原雨养区不同种植年限紫花苜蓿土壤细菌群落特征与生态功能预测[J]. 草业学报, 2021, 30(3): 54-67.MA X, LUO ZZ, ZHANG YQ, LIU JH, NIU YN, CAI LQ. Distribution characteristics and ecological function predictions of soil bacterial communities in rainfed alfalfa fields on the Loess Plateau[J]. Acta Prataculturae Sinica, 2021, 30(3): 54-67 (in Chinese).
    [34] BUTTERFIELD CN, LI Z, ANDEER PF, SPAULDING S, THOMAS BC, SINGH A, HETTICH RL, SUTTLE KB, PROBST AJ, TRINGE SG, NORTHEN T, PAN CL, BANFIELD JF. Proteogenomic analyses indicate bacterial methylotrophy and archaeal heterotrophy are prevalent below the grass root zone[J]. PeerJ, 2016, 4: e2687.
    [35] 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(2): 14-20.WANG GH, LIU JJ, YU ZH, WANG XZ, JIN J, LIU XB. Research progress of Acidobacteria ecology in soils[J]. Biotechnology Bulletin, 2016, 32(2): 14-20 (in Chinese).
    [36] GAVANDE PV, BASAK A, SEN S, LEPCHA K, MURMU N, RAI V, MAZUMDAR D, SAHA SP, DAS V, GHOSH S. Functional characterization of thermotolerant microbial consortium for lignocellulolytic enzymes with central role of Firmicutes in rice straw depolymerization[J]. Scientific Reports, 2021, 11: 3032.
    [37] 刘艳娇, 刘庆, 贺合亮, 赵文强, 寇涌苹. 亚高山粗枝云杉人工林土壤原核微生物群落结构与功能变化[J]. 应用生态学报, 2023(12): 3279-3290.LIU YJ, LIU Q, HE HL, ZHAO WQ, KOU YP. Changes in structure and function of soil prokaryotic communities in subalpine Picea asperata plantations[J]. Chinese Journal of Applied Ecology, 2023(12): 3279-3290.
    [38] 任敏. 塔里木盆地微生物群落结构及其在碳氮元素循环中的作用[D]. 武汉: 华中农业大学博士学位论文, 2018.REN M. Microbial communities in the Tarim Basin soil: diversity and their roles in carbon and nitrogen cycle[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2018 (in Chinese).
    [39] DELMONT TO, QUINCE C, SHAIBER A, ESEN ÖC, LEE ST, RAPPÉ MS, McLELLAN SL, LÜCKER S, EREN AM. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes[J]. Nature Microbiology, 2018, 3: 804-813.
    [40] 朱秀秀, 彭成林, 佀国涵, 沙爱华, 袁家富, 赵书军, 徐大兵. 稻虾共作模式对稻田土壤细菌群落结构与多样性的影响[J]. 土壤通报, 2021, 52(5): 1121-1128.ZHU XX, PENG CL, SI GH, SHA AH, YUAN JF, ZHAO SJ, XU DB. Effect of rice-crayfish integrated system on soil bacterial community structure and diversity in paddy field[J]. Chinese Journal of Soil Science, 2021, 52(5): 1121-1128 (in Chinese).
    [41] KRISTENSEN JM, SINGLETON C, CLEGG LA, PETRIGLIERI F, NIELSEN PH. High diversity and functional potential of undescribed “acidobacteriota” in Danish wastewater treatment plants[J]. Frontiers in Microbiology, 2021, 12: 643950.
    [42] 赵立凯, 周丽英, 李格, 张方, 李天昕. 矿区土壤与地下水中铁锰菌群分布规律及成因解析[J]. 环境化学, 2021, 40(5): 1464-1479.ZHAO LK, ZHOU LY, LI G, ZHANG F, LI TX. Distribution and genetic analysis of iron and manganese microbial community in soil and groundwater of mining area[J]. Environmental Chemistry, 2021, 40(5): 1464-1479 (in Chinese).
    [43] CRERAR DA, BARNES HL. Deposition of deep-sea manganese nodules[J]. Geochimica Et Cosmochimica Acta, 1974, 38(2): 279-300.
    [44] GAO XN, WU ZL, LIU R, WU JY, ZENG QY, QI YW. Rhizosphere bacterial community characteristics over different years of sugarcane ratooning in consecutive monoculture[J]. BioMed Research International, 2019, 2019: 4943150.
    [45] WESSÉN E, HALLIN S, PHILIPPOT L. Differential responses of bacterial and archaeal groups at high taxonomical ranks to soil management[J]. Soil Biology and Biochemistry, 2010, 42(10): 1759-1765.
    [46] 吕燕, 李秀颖, 王晶晶, 金慧娟, 崔逸儒, 杨毅, 严俊. 一株脱卤单胞菌属有机卤呼吸细菌的分离纯化与基础特征[J]. 微生物学报, 2021, 61(4): 1016-1029.LÜ Y, LI XY, WANG JJ, JIN HJ, CUI YR, YANG Y, YAN J. Isolation and basic characterization of a novel organohalide-respiring bacterium within the genus Dehalogenimonas[J]. Acta Microbiologica Sinica, 2021, 61(4): 1016-1029 (in Chinese).
    [47] 苗甜, 金雅琪, 王磊, 吴高阳, 陈忠. 黄土碳酸盐古气候意义及其研究展望[J]. 盐湖研究, 2021, 29(4): 90-99.MIAO T, JIN YQ, WANG L, WU GY, CHEN Z. Research progress on the paleoclimate significance of loess carbonate[J]. Journal of Salt Lake Research, 2021, 29(4): 90-99 (in Chinese).
    [48] WANG C, XIAO R, GUO YT, WANG Q, CUI Y, XIU YJ, MA ZW, ZHANG MX. Changes in soil microbial community composition during Phragmites australis straw decomposition in salt marshes with freshwater pumping[J]. The Science of the Total Environment, 2021, 762: 143996.
    [49] TIAN J, HE NP, HALE L, NIU SL, YU GR, LIU Y, BLAGODATSKAYA E, KUZYAKOV Y, GAO Q, ZHOU JZ. Soil organic matter availability and climate drive latitudinal patterns in bacterial diversity from tropical to cold temperate forests[J]. Functional Ecology, 2018, 32(1): 61-70.
    [50] 赵帆, 赵密珍, 王钰, 关玲, 庞夫花. 基于高通量测序研究草莓根际微生物群落结构和多样性[J]. 土壤, 2019, 51(1): 51-60.ZHAO F, ZHAO MZ, WANG Y, GUAN L, PANG FH. Microbial community structures and diversities in strawberry rhizosphere soils based on high-throughput sequencing[J]. Soils, 2019, 51(1): 51-60 (in Chinese).
    [51] 刘文静, 张建伟, 邱崇文, 包远远, 冯有智, 林先贵. 水旱轮作对土壤微生物群落构建过程的影响机制[J]. 土壤, 2020, 52(4): 710-717.LIU WJ, ZHANG JW, QIU CW, BAO YY, FENG YZ, LIN XG. Study on community assembly processes under paddy-upland rotation[J]. Soils, 2020, 52(4): 710-717 (in Chinese).
    [52] LI F, CHEN L, ZHANG JB, YIN J, HUANG SM. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations[J]. Frontiers in Microbiology, 2017, 8: 187.
    [53] SCHIMEL JP, GULLEDGE JM, CLEIN-CURLEY JS, LINDSTROM JE, BRADDOCK JF. Moisture effects on microbial activity and community structure in decomposing birch litter in the Alaskan taiga[J]. Soil Biology and Biochemistry, 1999, 31(6): 831-838.
    [54] 魏鹏, 安沙舟, 董乙强, 孙宗玖, 别尔达吾列提·希哈依, 李超. 基于高通量测序的准噶尔盆地荒漠土壤细菌多样性及群落结构特征[J]. 草业学报, 2020, 29(5): 182-190.WEI P, AN SZ, DONG YQ, SUN ZJ, XIHAYI B, LI C. A high-throughput sequencing evaluation of bacterial diversity and community structure of the desert soil in the Junggar Basin[J]. Acta Prataculturae Sinica, 2020, 29(5): 182-190 (in Chinese).
    [55] 王安林, 马瑞, 马彦军, 刘腾, 田永胜, 董正虎, 柴巧弟. 复合型治沙措施对土壤细菌群落结构及功能的影响[J]. 草业学报, 2023, 33(3): 46.WANG AL, MA R, MA YJ, LIU T, TIAN YS, DONG ZH, CHAI QD. Effects of compound sand control measures on soil bacterial community structure and function[J]. Acta Prataculturae Sinica, 2023, 33(3): 46 (in Chinese).
    [56] 李善家, 王福祥, 从文倩, 魏明, 王军强, 崔莉娟, 王子濠. 河西走廊荒漠土壤微生物群落结构及环境响应[J]. 土壤学报, 2022, 59(6): 1718-1728.LI SJ, WANG FX, CONG WQ, WEI M, WANG JQ, CUI LJ, WANG ZH. Microbial community structure and environmental response of desert soil in Hexi corridor[J]. Acta Pedologica Sinica, 2022, 59(6): 1718-1728 (in Chinese).
    [57] 宋兆齐, 王莉, 刘秀花, 梁峰. 云南和西藏四处热泉中的厚壁菌门多样性[J]. 生物技术, 2015, 25(5): 481-486, 436.SONG ZQ, WANG L, LIU XH, LIANG F. Diversities of Firmicutes in four hot springs in Yunnan and Xizang[J]. Biotechnology, 2015, 25(5): 481-486, 436 (in Chinese).
    [58] 赵定蓉, 陆梅, 赵旭燕, 闪昇阳, 孙官发, 孙煜佳, 刘国庆, 郭础鸟, 陈志明. 土壤细菌群落对纳帕海高原湿地退化的响应[J]. 浙江农林大学学报, 2023, 40(6): 1-13. ZHAO Dr, LU M, ZHAO Xy, SHAN Sy, SUN Gf, SUN Yj, LIU Gq, GUO Cn, CHEN Zm. Response of soil bacterial community to wetland degradation in the Napahai Plateau[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1-13 (in Chinese).
    [59] SHU WS, HUANG LN. Microbial diversity in extreme environments[J]. Nature Reviews Microbiology, 2022, 20: 219-235.
    [60] 李媛媛, 徐婷婷, 艾喆, 魏庐潞, 马飞. 不同海拔鬼箭锦鸡儿根际和非根际土壤细菌群落多样性及PICRUSt功能预测[J]. 环境科学, 2023, 44(4): 2304-2314.LI YY, XU TT, AI Z, WEI LL, MA F. Diversity and predictive functional of Caragana jubata bacterial community in rhizosphere and non-rhizosphere soil at different altitudes[J]. Environmental Science, 2023, 44(4): 2304-2314 (in Chinese).
    [61] 孙良杰, 齐玉春, 董云社, 彭琴, 何亚婷, 刘欣超, 贾军强, 曹丛丛. 全球变化对草地土壤微生物群落多样性的影响研究进展[J]. 地理科学进展, 2012, 31(12): 1715-1723.SUN LJ, QI YC, DONG YS, PENG Q, HE YT, LIU XC, JIA JQ, CAO CC. Research progresses on the effects of global change on microbial community diversity of grassland soils[J]. Progress in Geography, 2012, 31(12): 1715-1723 (in Chinese).
    [62] MUNEER MA, HOU W, LI J, HUANG XM, UR REHMAN KAYANI M, CAI YY, YANG WH, WU LQ, JI BM, ZHENG CY. Soil pH: a key edaphic factor regulating distribution and functions of bacterial community along vertical soil profiles in red soil of pomelo orchard[J]. BMC Microbiology, 2022, 22(1): 38.
    [63] 孔涛, 吴祥云, 赵雪淞, 刘民, 黄静, 张丹. 浑河上游河岸带土壤微生物数量及酶活性特征[J]. 水土保持通报, 2014, 34(1): 123-128. KONG T, WU XY, ZHAO XS, LIU M, HUANG J, ZHANG D. Soil microbial quantity and soil enzyme activity characteristics of riparian zone in upper reaches of Hunhe River[J]. Bulletin of Soil and Water Conservation, 2014, 34(1): 123-128 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘秀花,孙钰涵,卢杰,刘小康,马延东,贺屹,胡安焱. 黄土-古土壤原核生物群落对古气候变化的响应[J]. 微生物学报, 2024, 64(6): 1800-1823

复制
分享
文章指标
  • 点击次数:156
  • 下载次数: 335
  • HTML阅读次数: 328
  • 引用次数: 0
历史
  • 收稿日期:2023-12-25
  • 最后修改日期:2024-03-19
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码