西北印度洋卡尔斯伯格脊卧蚕热液羽流影响区古菌群落动态变化特征
作者:
基金项目:

国家自然科学基金(92351304,91951201);国家重点研发计划(2021YFF0501304)


Spatio-temporal variations of archaeal communities in the Wocan hydrothermal plume-influenced zone, Carlsberg Ridge, northwest Indian Ocean
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    【目的】热液羽流在浮力上升和非浮力侧向迁移过程中与背景海水不断进行物质和能量的交换。因海底热液活动和洋流的流速流向均存在动态变化性,热液羽流的高度、物理化学参数和微生物群落也随时空发生演化。然而,由于缺乏热液羽流的长期监测和时序取样,微生物群落(尤其是古菌)的多样性及其时空演化尚不清楚。【方法】2018年7月-2019年6月,在卧蚕1号热液喷口东南300 m处放置了一套带有2个沉积物捕获器(分别距海底300 m和40 m)和一个浊度仪(距海底150 m)的锚系潜标,对热液羽流和热液羽流下方颗粒物沉降区的近底水样进行了为期18个月的观测和时序采样。本研究采用16S rRNA基因高通量测序技术研究了水样中古菌群落的多样性,以了解羽流层和近底沉降层古菌群落结构的特征与时空演化。【结果】热原体纲(Thermoplasmata)、甲烷八叠球菌纲(Methanosarcinia)和甲烷杆菌纲(Methanobacteria)等热液来源古菌,当浊度异常值较高时,它们的丰度也增加。从空间上看,热液羽流区和近底沉降区古菌群落结构在门和纲水平上具有相似性,但在目水平上表现出差异性,而且各主要类群的相对丰度也存在差异,其中热原体纲在羽流层中的丰度普遍高于近底沉降层,而氨氧化古菌和甲烷八叠球菌纲在沉降层的丰度较高。【结论】卧蚕热液区东南300 m热液羽流层和近底沉降层均受到了热液的影响,羽流层受热液影响的程度相对更显著,而近底沉降层除了受到一定程度的热液影响外,还可能受到了再悬浮沉积物的影响。热液贡献大小的动态变化和底层沉积物再悬浮可能是造成热液区近端水体古菌群落时空异质性的主要因素。本研究深化了对热液影响区古生菌群落结构及其月际尺度时空分布特征的认识。

    Abstract:

    [Objective] Hydrothermal plumes exchange matter and energy with background seawater during the processes of buoyant rising and non-buoyant lateral migration. Due to the dynamic variability of both hydrothermal activity and ocean currents, the pattern, physico-chemical parameters, and microbial communities of hydrothermal plumes experience spatio-temporal variations. However, due to the lack of long-term monitoring and time-series sampling of hydrothermal plumes, the diversity and spatio-temporal variations of microbial communities, especially archaea, remain unclear.[Methods] From July 2018 to June 2019, a mooring system with two sediment traps (one for collection of hydrothermal plume samples 300 m above seafloor and the other for collection of near-bottom water 40 m above seafloor) and a turbidity sensor (150 m above seafloor) was deployed at 300 m southeast of the active Wocan-1 hydrothermal field for 18 months. We employed 16S rRNA gene high-throughput sequencing to study the diversity and spatio-temporal variations of archaeal communities in the samples on the monthly scale.[Results] The abundance of hydrothermal plume-associated archaea including Thermoplasmata, Methanosarcinia, and Methanobacteria increased when turbidity anomalies were higher. Spatially, the archaeal community structures in the hydrothermal plume and near-bottom water were similar at the phylum and class levels but showed differences at the order level. The relative abundance of Thermoplasmata was generally higher in the plume, whereas ammonia-oxidizing archaea and Methanosarcinia were more abundant in the near-bottom water. [Conclusion] Both the hydrothermal plume and the near-bottom water from 300 m southeast of the Wocan-1 hydrothermal field were affected by hydrothermal fluids, with the plume layer being more significantly affected. The near-bottom layer was affected by re-suspended sediments in addition to hydrothermal fluids. Dynamic changes of hydrothermal contributions and re-suspension of sediments were probably the main factors responsible for the spatial and temporal heterogeneity of archaeal communities. This study gives insights into the structure and spatio-temporal evolution of the archaeal community in the hydrothermal-influenced zone on a monthly scale.

    参考文献
    [1] JACKSON PR, LEDWELL JR, THURNHERR AM. Dispersion of a tracer on the East Pacific Rise (9°N to 10°N), including the influence of hydrothermal plumes[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(1): 37-52.
    [2] HUMPHRIS SE, ZIERENBERG RA, MULLINEAUX LS, THOMSON RE. Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions[J]. Geophysical Monograph Series, 1995, 91: 158-177.
    [3] GARTMAN A, FINDLAY AJ, LUTHER GW III. Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions[J]. Chemical Geology, 2014, 366: 32-41.
    [4] HOLDEN JF, BREIER JA, ROGERS KL, SCHULTE MD, TONER BM. Biogeochemical processes at hydrothermal vents: microbes and minerals, bioenergetics, and carbon fluxes[J]. Oceanography, 2012, 25(1): 196-208.
    [5] ORCUTT BN, SYLVAN JB, KNAB NJ, EDWARDS KJ. Microbial ecology of the dark ocean above, at, and below the seafloor[J]. Microbiology and Molecular Biology Reviews, 2011, 75(2): 361-422.
    [6] QIU ZY, HAN XQ, LI M, WANG YJ, CHEN XG, FAN WJ, ZHOU YD, CUI RY, WANG LS. The temporal variability of hydrothermal activity of Wocan hydrothermal field, Carlsberg Ridge, northwest Indian Ocean[J]. Ore Geology Reviews, 2021, 132: 103999.
    [7] SUNAMURA M, HIGASHI Y, MIYAKO C, ISHIBASHI J, MARUYAMA A. Two bacteria phylotypes are predominant in the Suiyo seamount hydrothermal plume[J]. Applied and Environmental Microbiology, 2004, 70(2): 1190-1198.
    [8] NAKAGAWA S, TAKAI K, INAGAKI F, HIRAYAMA H, NUNOURA T, HORIKOSHI K, SAKO Y. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field[J]. Environmental Microbiology, 2005, 7(10): 1619-1632.
    [9] DICK GJ, TEBO BM. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume[J]. Environmental Microbiology, 2010, 12(5): 1334-1347.
    [10] GERMAN CR, BOWEN A, COLEMAN ML, HONIG DL, HUBER JA, JAKUBA MV, KINSEY JC, KURZ MD, LEROY S, McDERMOTT JM, de LÉPINAY BM, NAKAMURA K, SEEWALD JS, SMITH JL, SYLVA SP, van DOVER CL, WHITCOMB LL, YOERGER DR. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(32): 14020-14025.
    [11] SYLVAN JB, PYENSON BC, ROUXEL O, GERMAN CR, EDWARDS KJ. Time-series analysis of two hydrothermal plumes at 9°50'N East Pacific Rise reveals distinct, heterogeneous bacterial populations[J]. Geobiology, 2012, 10(2): 178-192.
    [12] SUNAMURA M, YANAGAWA K. Microbial cell densities, community structures, and growth in the hydrothermal plumes of subduction hydrothermal systems[M]//Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo: Springer, 2015: 31-38.
    [13] ANANTHARAMAN K, BREIER JA, SHEIK CS, DICK GJ. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(1): 330-335.
    [14] BAKER BJ, LESNIEWSKI RA, DICK GJ. Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume[J]. The ISME Journal, 2012, 6(12): 2269-2279.
    [15] KUPPA BASKARAN DK, UMALE S, ZHOU ZC, RAMAN K, ANANTHARAMAN K. Metagenome- based metabolic modelling predicts unique microbial interactions in deep-sea hydrothermal plume microbiomes[J]. ISME Communications, 2023, 3(1): 42.
    [16] REED DC, BREIER JA, JIANG H, ANANTHARAMAN K, KLAUSMEIER CA, TONER BM, HANCOCK C, SPEER K, THURNHERR AM, DICK GJ. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents[J]. The ISME Journal, 2015, 9(8): 1857-1869.
    [17] HAALBOOM S, PRICE DM, MIENIS F, van BLEIJSWIJK JDL, de STIGTER HC, WITTE HJ, REICHART GJ, DUINEVELD GCA. Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge[J]. Biogeosciences, 2020, 17(9): 2499-2519.
    [18] ZHANG LK, KANG MY, XU JJ, XU J, SHUAI YJ, ZHOU XJ, YANG ZH, MA KS. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge[J]. Scientific Reports, 2016, 6: 25982.
    [19] WINN CD, KARL DM, MASSOTH GJ. Microorganisms in deep-sea hydrothermal plumes[J]. Nature, 1986, 320: 744-746.
    [20] FORTUNATO CS, LARSON B, BUTTERFIELD DA, HUBER JA. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids[J]. Environmental Microbiology, 2018, 20(2): 769-784.
    [21] 谢倩, 韩喜球, 魏铭聪, 邱中炎, 董传奇, 吴月红, 吴雪停, 余娟. 西北印度洋卡尔斯伯格脊卧蚕热液羽流影响区细菌群落结构特征及其演化[J]. 微生物学报, 2022, 62(6): 1974-1985.XIE Q, HAN XQ, WEI MC, QIU ZY, DONG CQ, WU YH, WU XT, YU J. Characteristics and evolution of bacterial communities in the Wocan hydrothermal plume-influenced zone, Carlsberg Ridge, northwestern Indian Ocean[J]. Acta Microbiologica Sinica, 2022, 62(6): 1974-1985 (in Chinese).
    [22] WANG YJ, HAN XQ, PETERSEN S, FRISCHE M, QIU ZY, LI HM, LI HL, WU ZC, CUI RY. Mineralogy and trace element geochemistry of sulfide minerals from the Wocan Hydrothermal Field on the slow-spreading Carlsberg Ridge, Indian Ocean[J]. Ore Geology Reviews, 2017, 84: 1-19.
    [23] 刘学文. 西北印度洋Carlsberg脊热液羽流微生物多样性及其硫氧化特征研究[D]. 厦门: 自然资源部第三海洋研究所硕士学位论文, 2020.LIU XW. Microbial diversity and sulfur oxidation characteristics of hydrothermal plume of carlsberg ridge in northwest Indian Ocean[D]. Xiamen: Master’s Thesis of Third Institute of Oceanography, Ministry of Natural Pesources, 2020 (in Chinese).
    [24] LIU C, LI H, ZHANG YY, SI DD, CHEN QW. Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2016, 216: 87-94.
    [25] CHEN SF, ZHOU YQ, CHEN YR, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
    [26] SCHLOSS PD, WESTCOTT SL, RYABIN T, HALL JR, HARTMANN M, HOLLISTER EB, LESNIEWSKI RA, OAKLEY BB, PARKS DH, ROBINSON CJ, SAHL JW, STRES B, THALLINGER GG, van HORN DJ, WEBER CF. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Applied and Environmental Microbiology, 2009, 75(23): 7537-7541.
    [27] REYSENBACH AL. Thermoprotei class. nov.[M]// Bergey’s Manual of Systematics of Archaea and Bacteria. New Jersey: John Wiley & Sons, Inc., 2015.
    [28] WANG KH, HAN XQ, WANG YJ, CAI YY, QIU ZY, ZHENG XQ. Numerical simulation-based analysis of seafloor hydrothermal plumes: a case study of the Wocan-1 hydrothermal field, carlsberg ridge, northwest Indian Ocean[J]. Journal of Marine Science and Engineering, 2023, 11(5): 1070.
    [29] PAUL K, NONOH JO, MIKULSKI L, BRUNE A. “MethanoplasmatalesThermoplasmatales-related archaea in termite guts and other environments, are the seventh order of methanogens[J]. Applied and Environmental Microbiology, 2012, 78(23): 8245-8253.
    [30] 牛明杨. 南海北部陆坡沉积物中深古菌和甲烷代谢古菌的分布、多样性和代谢特征研究[D]. 上海: 上海交通大学博士学位论文, 2017.NIU MY. Distribution, diversity and metabolism of bathyarchaeota and methane metabolizing microbes in northern slope of sh China Sea[D]. Shanghai: Doctoral Dissertation of Shanghai Jiao Tong University, 2017 (in Chinese).
    [31] MIROSHNICHENKO ML. Thermophilic microbial communities of deep-sea hydrothermal vents[J]. Microbiology, 2004, 73: 1-13.
    [32] LOLLAR BS. Life’s chemical kitchen[J]. Science, 2004, 304(5673): 972-973.
    [33] 承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5): 1143-1164.CHENG L, ZHENG ZZ, WANG C, ZHANG H. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5): 1143-1164 (in Chinese).
    [34] ZHOU ZC, ST JOHN E, ANANTHARAMAN K, REYSENBACH AL. Global patterns of diversity and metabolism of microbial communities in deep-sea hydrothermal vent deposits[J]. Microbiome, 2022, 10(1): 241.
    [35] HUANG J, CHEN P, ZHU YX, WANG J, SONG L, HAN XQ, HUANG Y. Biogeography and potential ecological functions of prokaryotes in the hydrothermal and non-hydrothermal field sediments of the Indian Ocean Ridges[J]. Frontiers in Marine Science, 2023, 9: 1072569.
    [36] GUPTA A, SAHA A, SAR P. Thermoplasmata and Nitrososphaeria as dominant archaeal members in acid mine drainage sediment of Malanjkhand Copper Project, India[J]. Archives of Microbiology, 2021, 203: 1833-1841.
    [37] ZILLIG W, REYSENBACH AL. Thermococci class. nov.[M]//Bergey’s Manual of Systematics of Archaea and Bacteria. New Jersey: John Wiley & Sons, Inc., 2015.
    [38] ZINDER SH, SOWERS KR, FERRY JG. NOTES: Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 1985, 35(4): 522-523.
    [39] BOONE DR. Methanobacteria class. nov.[M]// Bergey’s Manual of Systematics of Archaea And Bacteria. New Jersey: John Wiley & Sons, Inc., 2015.
    [40] 易悦, 周卓, 黄艳, 承磊. 我国产甲烷古菌研究进展与展望[J]. 微生物学报, 2023, 63(5): 1796-1814.YI Y, ZHOU Z, HUANG Y, CHENG L. Methanogen research in China: current status and prospective[J]. Acta Microbiologica Sinica, 2023, 63(5): 1796-1814 (in Chinese).
    [41] ORPHAN VJ, HINRICHS KU, USSLER W Ⅲ, PAULL CK, TAYLOR LT, SYLVA SP, HAYES JM, DELONG EF. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments[J]. Applied and Environmental Microbiology, 2001, 67(4): 1922-1934.
    [42] LIANG L, SUN Y, DONG YJ, AHMAD T, CHEN YF, WANG J, WANG FP. Methanococcoides orientis sp. nov., a methylotrophic methanogen isolated from sediment of the East China Sea[J]. International Journal of Systematic and Evolutionary Microbiology, 2022, 72(5): 005384.
    [43] ZILLIG W, HOLZ I, JANEKOVIC D, SCHÄFER W, REITER WD. The archaebacterium Thermococcus celer represents, a novel genus within the thermophilic branch of the archaebacteria[J]. Systematic and Applied Microbiology, 1983, 4(1): 88-94.
    [44] SHAO N, AKINYEMI TS, WHITMAN WB. Methanosphaera[M]//Bergey’s Manual of Systematics of Archaea and Bacteria. New Jersey: John Wiley & Sons, Inc., 2015.
    [45] BOONE DR. Methanobacterium[M]//Bergey’s Manual of Systematics of Archaea And Bacteria. New Jersey: John Wiley & Sons, Inc., 2015.
    [46] WU XT, HAN XQ, WANG YJ, GARBE- SCHÖNBERG D, SCHMIDT M, ZHANG ZH, QIU ZY, ZONG T, ZHOU P, YU X, LIU JQ, LUO HM. Geochemistry of vent fluids from the Daxi Vent Field, Carlsberg Ridge, Indian Ocean: constraints on subseafloor processes beneath a non-transform offset[J]. Marine Geology, 2023, 455: 106955.
    [47] ARCE-RODRÍGUEZ A, PUENTE-SÁNCHEZ F, AVENDAÑO R, MARTÍNEZ-CRUZ M, de MOOR JM, PIEPER DH, CHAVARRÍA M. Thermoplasmatales and sulfur-oxidizing bacteria dominate the microbial community at the surface water of a CO2-rich hydrothermal spring located in Tenorio Volcano National Park, Costa Rica[J]. Extremophiles, 2019, 23: 177-187.
    [48] FILLOL M, SÀNCHEZ-MELSIÓ A, GICH F, M BORREGO C. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats[J]. FEMS Microbiology Ecology, 2015, 91(4): fiv020.
    [49] MENG J, XU J, QIN D, HE Y, XIAO X, WANG FP. Genetic and functional properties of uncultivated MCG archaea assessed by metagenome and gene expression analyses[J]. The ISME Journal, 2014, 8(3): 650-659.
    [50] LLOYD KG, SCHREIBER L, PETERSEN DG, KJELDSEN KU, LEVER MA, STEEN AD, STEPANAUSKAS R, RICHTER M, KLEINDIENST S, LENK S, SCHRAMM A, JøRGENSEN BB. Predominant Archaea in marine sediments degrade detrital proteins[J]. Nature, 2013, 496: 215-218.
    [51] KARNER MB, DeLONG EF, KARL DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean[J]. Nature, 2001, 409: 507-510.
    [52] NAGATA T, FUKUDA H, FUKUDA R, KOIKE I. Bacterioplankton distribution and production in deep Pacific waters: large-scale geographic variations and possible coupling with sinking particle fluxes[J]. Limnology and Oceanography, 2000, 45(2): 426-435.
    [53] LABRENZ M, SINTES E, TOETZKE F, ZUMSTEG A, HERNDL GJ, SEIDLER M, JÜRGENS K. Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea[J]. The ISME Journal, 2010, 4(12): 1496-1508.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

巫苑桢,韩喜球,谢倩,魏铭聪,余娟. 西北印度洋卡尔斯伯格脊卧蚕热液羽流影响区古菌群落动态变化特征[J]. 微生物学报, 2024, 64(6): 1848-1863

复制
分享
文章指标
  • 点击次数:183
  • 下载次数: 429
  • HTML阅读次数: 447
  • 引用次数: 0
历史
  • 收稿日期:2024-01-27
  • 最后修改日期:2024-03-18
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码