石油降解酶的筛选、固定化及添加表面活性剂强化其对石油的降解
作者:
基金项目:

国家自然科学基金(42307279)


Petroleum-degrading enzymes: screening and performance improvement by immobilization and surfactants
Author:
  • YANG Jing

    YANG Jing

    School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122,Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Qingsong

    HUANG Qingsong

    School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122,Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAO Congyu

    YAO Congyu

    School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122,Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHI Meng

    SHI Meng

    School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122,Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GU Lei

    GU Lei

    Wuxi Research Institue of Petroleum Geology, Sinopec Petroleum Exploration and Production Research Institute, Wuxi 214126, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Kewei

    XU Kewei

    Wuxi Research Institue of Petroleum Geology, Sinopec Petroleum Exploration and Production Research Institute, Wuxi 214126, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WU Jing

    WU Jing

    School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122,Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YAN Zhengfei

    YAN Zhengfei

    School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China;State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, Jiangsu, China;International Joint Laboratory on Food Safety, Ministry of Education, Jiangnan University, Wuxi 214122,Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在石油开采和加工过程中产生的含油污泥是石油化工行业中主要的污染源,会对周边生态环境造成持续性的危害。生物法降解被认为是一种有效且可持续的技术而备受关注。目前的研究多聚焦在微生物法降解石油,而酶法降解鲜有报道。【目的】本研究旨在优选石油高效降解酶,并深入分析其降解特性,以期构建一套酶法降解石油的体系。【方法】基于分子对接模拟技术,分析酶与石油类常见底物的结合可能性及结合模式,通过石油降解实验优选降解酶;通过添加表面活性剂及酶固定化进一步提高酶对石油的降解效果。【结果】利用分子对接模拟及实验验证获得5种具有石油降解能力的生物酶,其中枯草芽孢杆菌(Bacillus subtilis)来源的漆酶BsLac对石油的降解率最高,72 h可降解34.1%的石油;进一步研究发现,表面活性剂的添加均可促进BsLac对石油的降解,其中槐糖脂的促进作用尤为显著。当槐糖脂终浓度为1 000 mg/L时,石油的降解率最高,为46.3%;然而,2,2'-联氮-双(3-乙基苯并噻唑啉-6-磺酸)二铵盐的添加对BsLac降解石油的促进作用并不明显;固定化结果表明,以花生壳为吸附载体固定化的BsLac对石油的降解率最高,为56.3%。【结论】本研究基于分子对接模拟和实验筛选获得了石油降解酶BsLac,固定化的BsLac可实现石油的高效降解,为生物酶法降解石油的进一步探索奠定了实验和理论基础。

    Abstract:

    The oily sludge produced in petroleum exploitation and processing is the main pollution source in the petrochemical industry, causing continuous harm to the surrounding eco-environment. Bioremediation as an effective and sustainable technology has attracted much attention. However, the current studies focus on the microbial degradation of petroleum in oily sludge and rarely report enzymatic degradation. [Objective] This study aims to screen petroleum-degradation enzymes by computer simulation and experimental techniques and improve the degradation effect by adding surfactants and enzyme immobilization. [Methods] Molecular docking was employed to analyze the possibility and mode of binding of target enzymes to common substrates in petroleum and the strongest degrading enzyme was screened out by enzymatic degradation experiments. Furthermore, the degradation conditions of the enzyme screened out were optimized, and the degradation effect on petroleum was further improved by immobilization and addition of surfactants. [Results] A total of five petroleum-degrading enzymes were obtained by molecular docking simulation and experimental verification. Among them, Bacillus subtilis laccase (BsLac) exhibited the highest degradation rate of petroleum, which reached 34.1% at the time point of 72 h. Surfactants improved the degradation of BsLac on petroleum, and sophorolipid showcased the strongest promoting effect, with the highest degradation rate of 46.3% at the sophorolipid concentration of 1 000 mg/L. However, 2,2'-azinoo-bis(3-ethyl-benzothiazoline-6-sulfonic acid) diammonium salt (ABTS) did not present promoting effect on BsLac for petroleum degradation. The BsLac immobilized by peanut shell as the adsorption carrier exhibited the highest petroleum degradation rate (56.3%). [Conclusion] We screened out the strongest petroleum-degrading enzyme by molecular docking and experimental verification. Furthermore, the immobilization of BsLac can improve the degradation performance on petroleum. The findings lay an experimental and theoretical foundation for further exploring the enzymatic degradation of petroleum.

    参考文献
    [1] 刘晓林, 崔庆锋, 杨正明, 魏士平, 张群. 石油中长链烷烃微生物降解及分子机制研究进展[J]. 微生物学通报, 2023, 50(4): 1559-1575.LIU XL, CUI QF, YANG ZM, WEI SP, ZHANG Q. Microbial degradation and molecular mechanism of medium and long-chain alkanes in petroleum: a review[J]. Microbiology China, 2023, 50(4): 1559-1575 (in Chinese).
    [2] VARJANI SJ. Microbial degradation of petroleum hydrocarbons[J]. Bioresource Technology, 2017, 223: 277-286.
    [3] ALFAIFY AM, AHMAD MIR M, ALRUMMAN SA. Klebsiella oxytoca: an efficient pyrene-degrading bacterial strain isolated from petroleum-contaminated soil[J]. Archives of Microbiology, 2022, 204(5): 248.
    [4] HUANG X, WANG J, MA CY, MA LY, QIAO C. Diversity analysis of microbial communities and biodegradation performance of two halotolerant and thermotolerant Bacillus licheniformis strains in oilfield-produced wastewater[J]. International Biodeterioration & Biodegradation, 2019, 137: 30-41.
    [5] CHEN XQ, GUO ZY, WANG L, YAN ZF, JIN CX, HUANG QS, KONG DM, RAO DM, WU J. Directional-path modification strategy enhances PET hydrolase catalysis of plastic degradation[J]. Journal of Hazardous Materials, 2022, 433: 128816.
    [6] KE CY, CHEN LY, QIN FL, SUN WJ, WANG SC, ZHANG QZ, ZHANG XL. Biotreatment of oil sludge containing hydrocarbons by Proteus mirabilis SB[J]. Environmental Technology & Innovation, 2021, 23: 101654.
    [7] ZHANG T, LIU YY, ZHONG S, ZHANG LS. AOPs-based remediation of petroleum hydrocarbons- contaminated soils: efficiency, influencing factors and environmental impacts[J]. Chemosphere, 2020, 246: 125726.
    [8] GANESAN M, MANI R, SAI S, KASIVELU G, AWASTHI MK, RAJAGOPAL R, AZELEE NIW, SELVI PK, CHANG SW, RAVINDRAN B. Bioremediation by oil degrading marine bacteria: an overview of supplements and pathways in key processes[J]. Chemosphere, 2022, 303(Pt 1): 134956.
    [9] DAI XL, LV J, WEI WX, GUO SH. Effects of adding laccase to bacterial consortia degrading heavy oil[J]. Processes, 2021, 9(11): 2025.
    [10] YAO CY, XIA W, DOU MD, DU YY, WU J. Oxidative degradation of UV-irradiated polyethylene by laccase-mediator system[J]. Journal of Hazardous Materials, 2022, 440: 129709.
    [11] EIBES G, MOREIRA MT, FEIJOO G, LEMA JM. Enzymatic degradation of low soluble compounds in monophasic water: solvent reactors. Kinetics and modeling of anthracene degradation by MnP[J]. Biotechnology and Bioengineering, 2008, 100(4): 619-626.
    [12] ZHANG Y, LIN DF, HAO J, ZHAO ZH, ZHANG YJ. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons[J]. World Journal of Microbiology and Biotechnology, 2020, 36(8): 116.
    [13] JANUSZ G, PAWLIK A, ŚWIDERSKA-BUREK U, POLAK J, SULEJ J, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Laccase properties, physiological functions, and evolution[J]. International Journal of Molecular Sciences, 2020, 21(3): 966.
    [14] QIU X, WANG SS, MIAO SS, SUO HB, XU HJ, HU Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal[J]. Journal of Hazardous Materials, 2021, 401: 123353.
    [15] HUANG YX, LIN JB, ZOU J, XU JX, WANG MY, CAI HH, YUAN BL, MA J. ABTS as an electron shuttle to accelerate the degradation of diclofenac with horseradish peroxidase-catalyzed hydrogen peroxide oxidation[J]. Science of the Total Environment, 2021, 798: 149276.
    [16] 张司雨, 董仕鹏, 高士祥, 卢坤. 漆酶/ABTS介体系统催化氧化羟基化多溴联苯醚[J]. 环境化学, 2022, 41(12): 3855-3865.ZHANG SY, DONG SP, GAO SX, LU K. Transformation of hydroxylation polybrominateddiphenyl ethers in laccase-ABTS system[J]. Environmental Chemistry, 2022, 41(12): 3855-3865 (in Chinese).
    [17] LIU J, ZHAO B, LAN YZ, MA T. Enhanced degradation of different crude oils by defined engineered consortia of Acinetobacter venetianus RAG-1 mutants based on their alkane metabolism[J]. Bioresource Technology, 2021, 327: 124787.
    [18] PARTHIPAN P, PREETHAM E, MACHUCA LL, RAHMAN PKSM, MURUGAN K, RAJASEKAR A. Biosurfactant and degradative enzymes mediated crude oil degradation by bacterium Bacillus subtilis A1[J]. Frontiers in Microbiology, 2017, 8: 193.
    [19] OLMEDO A, del RÍO JC, KIEBIST J, ULLRICH R, HOFRICHTER M, SCHEIBNER K, MARTÍNEZ AT, GUTIÉRREZ A. Fatty acid chain shortening by a fungal peroxygenase[J]. Chemistry, 2017, 23(67): 16985-16989.
    [20] SHI M, KONG DM, ZHANG H, RAO DM, ZHAO TL, YANG J, LIU ZZ, CHEN S, ZHANG FS, WU J, WANG L. Enhancing the heterologous expression of latex clearing protein from Streptomyces sp. strain K30 in Escherichia coli through fermentation condition optimization and molecular modification[J]. International Journal of Biological Macromolecules, 2024, 254(Pt 3): 127995.
    [21] KADRI T, ROUISSI T, KAUR BRAR S, CLEDON M, SARMA S, VERMA M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review[J]. Journal of Environmental Sciences (China), 2017, 51: 52-74.
    [22] ZHANG Y, ZENG ZT, ZENG GM, LIU XM, LIU ZF, CHEN M, LIU LF, LI JB, XIE GX. Effect of Triton X-100 on the removal of aqueous phenol by laccase analyzed with a combined approach of experiments and molecular docking[J]. Colloids and Surfaces B, Biointerfaces, 2012, 97: 7-12.
    [23] BEZZA FA, CHIRWA EM. Biosurfactant-enhanced bioremediation of aged polycyclic aromatic hydrocarbons (PAHs) in creosote contaminated soil[J]. Chemosphere, 2016, 144: 635-644.
    [24] QUINTANILLA-GUERRERO F, DUARTE-VÁZQUEZ MA, GARCÍA-ALMENDAREZ BE, TINOCO R, VAZQUEZ-DUHALT R, REGALADO C. Polyethylene glycol improves phenol removal by immobilized turnip peroxidase[J]. Bioresource Technology, 2008, 99(18): 8605-8611.
    [25] ZDARTA J, JESIONOWSKI T, PINELO M, MEYER AS, IQBAL HMN, BILAL M, NGUYEN LN, NGHIEM LD. Free and immobilized biocatalysts for removing micropollutants from water and wastewater: recent progress and challenges[J]. Bioresource Technology, 2022, 344(Pt B): 126201.
    [26] 张璟譞, 高兵兵, 何冰芳. 生物催化中的酶固定化研究进展[J]. 生物加工过程, 2022, 20(1): 9-19, 40.ZHANG JX, GAO BB, HE BF. Research progress of enzyme immobilized in biocatalysis[J]. Chinese Journal of Bioprocess Engineering, 2022, 20(1): 9-19, 40 (in Chinese).
    [27] KUCHARZYK KH, BENOTTI M, DARLINGTON R, LALGUDI R. Enhanced biodegradation of sediment-bound heavily weathered crude oil with ligninolytic enzymes encapsulated in calcium-alginate beads[J]. Journal of Hazardous Materials, 2018, 357: 498-505.
    [28] MECKENSTOCK RU, SAFINOWSKI M, GRIEBLER C. Anaerobic degradation of polycyclic aromatic hydrocarbons[J]. FEMS Microbiology Ecology, 2004, 49(1): 27-36.
    [29] 袁国民, 从海峰, 李鑫钢. 重芳烃轻质化与分离研究进展[J]. 化学工业与工程, 2022, 39(3): 60-72. YUAN GM, CONG HF, LI XG. Research progress in conversion to light aromatics and separation of heavy aromatics[J]. Chemical Industry and Engineering, 2022, 39(3): 60-72 (in Chinese).
    [30] 王岽, 王亭, 黄素秀, 李昕卉. 贝莱斯芽孢杆菌12-5B的石油烃降解特性研究[J]. 绿色科技, 2023, 25(12): 194-198.WANG D, WANG T, HUANG SX, LI XH. Study on petroleum hydrocarbon degradation characteristics of B. velezensis 12-5B[J]. Journal of Green Science and Technology, 2023, 25(12): 194-198 (in Chinese).
    [31] 袁帅, 陈晓倩, 吴敬, 宿玲恰, 颜正飞. Aspergillus oryzae RIB40氨肽酶(AoAPase)异源表达及在鳕鱼肽脱苦中的应用[J]. 微生物学报, 2022, 62(12): 4943-4952.YUAN S, CHEN XQ, WU J, SU LQ, YAN ZF. Heterologous expression of aminopeptidase (AoAPase) from Aspergillus oryzae RIB40 and the application in debittering cod peptides[J]. Acta Microbiologica Sinica, 2022, 62(12): 4943-4952 (in Chinese).
    [32] DAÂSSI D, RODRÍGUEZ-COUTO S, NASRI M, MECHICHI T. Biodegradation of textile dyes by immobilized laccase from Coriolopsis gallica into Ca-alginate beads[J]. International Biodeterioration & Biodegradation, 2014, 90: 71-78.
    [33] REHMAN R, ALI MI, ALI N, BADSHAH M, IQBAL M, JAMAL A, HUANG ZX. Crude oil biodegradation potential of biosurfactant-producing Pseudomonas aeruginosa and Meyerozyma sp.[J]. Journal of Hazardous Materials, 2021, 418: 126276.
    [34] LIU HY, ZHANG ZX, XIE SW, XING H, ZHU YN, LI HY, YI ZS. Study on transformation and degradation of bisphenol A by Trametes versicolor laccase and simulation of molecular docking[J]. Chemosphere, 2019, 224: 743-750.
    [35] WANG XT, MENG FP, ZHANG B, XIA YF. Elimination of tetracyclines in seawater by laccase-mediator system[J]. Chemosphere, 2023, 333: 138916.
    [36] SAHA R, MUKHOPADHYAY M. Time-dependent electrochemical characteristics of a phenolic and non-phenolic compound in the presence of laccase/ABTS system[J]. PLoS One, 2022, 17(9): e0275338.
    [37] YAASHIKAA PR, DEVI MK, KUMAR PS. Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: a review[J]. Chemosphere, 2022, 299: 134390.
    [38] PEIXOTO RS, VERMELHO AB, ROSADO AS. Petroleum-degrading enzymes: bioremediation and new prospects[J]. Enzyme Research, 2011, 2011: 475193.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨静,黄青松,姚从禹,时梦,顾磊,许科伟,吴敬,颜正飞. 石油降解酶的筛选、固定化及添加表面活性剂强化其对石油的降解[J]. 微生物学报, 2024, 64(6): 1936-1947

复制
分享
文章指标
  • 点击次数:328
  • 下载次数: 431
  • HTML阅读次数: 415
  • 引用次数: 0
历史
  • 收稿日期:2023-10-24
  • 最后修改日期:2024-03-12
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码