H2O2预处理胜利褐煤镜质组的生物产气研究
作者:
基金项目:

国家自然科学基金(42172187);中央高校基本科研业务费专项资金(2021ZDPY0210)


Biogas production of vitrinite from Shengli lignite pretreated with H2O2
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [43]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究H2O2处理对煤中镜质组生物产气的影响。【方法】选择内蒙古胜利褐煤作为研究对象,以实验室前期富集保存的产甲烷微生物作为出发菌群,首先通过浮选对煤炭进行显微组分分离(高镜质组GJ、中镜质组ZJ和低镜质组DJ),并对煤的物化性质进行表征,然后在固液比1:15、H2O2浓度10%、预处理时间30 d条件下用H2O2处理不同镜质组含量的样品,再以处理前后的原煤及残煤进行生物产气实验。采用气相色谱、X射线衍射和傅里叶变换红外光谱等方法分析H2O2处理前后产气及煤的物化性质变化。【结果】经过H2O2预处理后,煤中镜质组的含量有所下降,挥发成分增加,固定碳减少,H2O2与高镜质组煤样反应更剧烈,氧含量增加,碳含量减少。未经过处理的煤在100 d时产甲烷量为GJ>ZJ>DJ,分别为174.24、164.31、135.52 μmol/g煤,而经过H2O2预处理的煤在20 d后停止产气,最终产甲烷量分别为39.63、39.61、41.55μmol/g煤,比原煤产气减少了77.26%、75.89%和69.34%。随着镜质组含量的增加,经过H2O2处理后的煤样芳香环层片的层间距d002、单层层片的延展度La和层片的堆叠度Lc减小,而芳香层数N增加,表明晶核结构变小。经过H2O2处理后煤芳烃碳、芳香族、C=O基团和C=C基团所占比例增加,芳环缩合度增大,含氧官能团变多。【结论】利用H2O2长时间处理使煤基质中较易被微生物利用的有机质结构减少,从而降低了产气能力。

    Abstract:

    [Objective] To study the effect of hydrogen peroxide (H2O2) treatment on biogas production of vitrinite from coal. [Methods] Shengli lignite collected from Inner Mongolia was used in this study. The methanogenic microbial consortium previously enriched and preserved in our laboratory was used as the inoculum. Coal macerals were separated by floatation, which yielded three samples containing high vitrinite (GJ), medium vitrinite (ZJ), and low vitrinite (DJ). After being characterized, the samples were treated with 10% H2O2 for 30 days at a solid-to-liquid ratio of 1:15. Biogas production experiments were conducted with the coal samples before and after treatment. Gas chromatography was employed to analyze the gas composition, and X-ray diffractometry and Fourier transform infrared spectroscopy were employed to study the physical and chemical properties of the coal before and after treatment as well as after gas production.[Results] The coal samples after H2O2 treatment showcased reduced vitrinite content and carbon fixation and increased volatile matter. The reaction was more intense in the coal sample with high content of vitrinite, accompanied by increased oxygen content and reduced carbon. Methane yields from untreated coal samples on day 100 followed the order of GJ (174.24 μmol/g coal)>ZJ (164.31 μmol/g coal)>DJ (135.52 μmol/g coal). However, the coal samples pretreated with H2O2 ceased gas production after day 20, with the gas yields of 39.63, 39.61, and 41.55 μmol/g coal, respectively, representing reductions of 77.26%, 75.89%, and 69.34%, respectively, compared with those from the coal samples without treatment. Furthermore, as vitrinite content increased, the coal samples demonstrated decreased layer spacing (d002) of the aromatic ring lamellae, ductility (La) of the single-layer lamellae, and stacking degree (Lc) of the lamellae and increased number of aromatic layers (N) after H2O2 treatment, which indicated that the crystal nuclei appeared smaller. In addition, H2O2 treatment led to increased proportions of aromatic carbons, aromatic moieties, C=O groups, and C=C groups, enhanced aromatic ring condensation, and increased number of oxygen-containing functional groups. [Conclusion] Long-term H2O2 treatment reduces organic matter that is readily bioavailable in coal matrix, thereby decreasing gas production.

    参考文献
    [1] ZHAKUPOV D, KULMUKANOVA L, SARBASSOV Y, SHAH D. Flue gas analysis for biomass and coal co-firing in fluidized bed: process simulation and validation[J]. International Journal of Coal Science & Technology, 2022, 9(1): 59.
    [2] LARIONOV KB, MISHAKOV IV, BEREZIKOV NI, GORSHKOV AS, KALTAEV AZ, SLYUSARSKIY KV, RUBAN AS, VEDYAGIN AA. Activation of anthracite combustion by copper acetate: mechanism, effect of particle size and introduction method[J]. International Journal of Coal Science & Technology, 2023, 10(1): 13.
    [3] DONG WL, XIANG LK, GAO J, QIU BB, CHU HQ. Effect of CO2 dilution on laminar burning velocities, combustion characteristics and NOx emissions of CH4/air mixtures[J]. International Journal of Coal Science & Technology, 2023, 10(1): 72.
    [4] 高明, 付伟贤. 煤气化技术的现状及发展趋势[J]. 化工管理, 2020(15): 113-114.GAO M, FU WX. Present situation and development trend of coal gasification technology[J]. Chemical Enterprise Management, 2020(15): 113-114 (in Chinese).
    [5] 袁亮. 煤炭工业碳中和发展战略构想[J]. 中国工程科学, 2023, 25(5): 103-110.YUAN L. Strategic conception of carbon neutralization in coal industry[J]. Strategic Study of Chinese Academy of Engineering, 2023, 25(5): 103-110 (in Chinese).
    [6] LYU X, ZHANG T, YUAN L, FANG JJ. Prospects for the transformation and development of carbon storage in abandoned mines of coal enterprises from the perspective of carbon neutrality[J]. International Journal of Coal Science & Technology, 2023, 10(1): 36.
    [7] HUANG ZX, Liers C, Ullrich R, et al. Depolymerization and solubilization of chemically pretreated powder river basin subbituminous coal by manganese peroxidase (MnP) from Bjerkandera adusta[J]. Fuel, 2013, 112: 295-301..
    [8] HUANG ZX, URYNOWICZ MA, COLBERG PJS. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate[J]. Fuel, 2013, 111: 813-819.
    [9] 成雅彤, 宁舒苗, 郭红光, 张攀攀. H2O2预处理联合生物厌氧降解对烟煤孔隙的影响[J]. 煤矿安全, 2021, 52(1): 8-12.CHENG YT, NING SM, GUO HG, ZHANG PP. Effect of H2O2 pretreatment combined with anaerobic biodegradation on pore structure of bituminous coal[J]. Safety in Coal Mines, 2021, 52(1): 8-12 (in Chinese).
    [10] 李兴凤, 郭红光, 张亦雯, 韩作颖, 刘健. NaOH预处理对无烟煤生物甲烷转化的影响[J]. 煤矿安全, 2019, 50(11): 6-9.LI XF, GUO HG, ZHANG YW, HAN ZY, LIU J. Effect of NaOH pretreatment on biomethane conversion in anthracite[J]. Safety in Coal Mines, 2019, 50(11): 6-9 (in Chinese).
    [11] YIN SD, TAO XX, SHI KY, TAN ZC. Biosolubilisation of Chinese lignite[J]. Energy, 2009, 34(6): 775-781.
    [12] 张丹. 胜利褐煤镜质组的H2O2预处理及其生物产气研究[D]. 徐州: 中国矿业大学硕士学位论文, 2022.ZHANG D. Study on gas production of vitrinite of Shengli lignite pretreated by H2O2[D]. Xuzhou: Master’s Thesis of China University of Mining and Technology, 2022 (in Chinese).
    [13] 李啸宇, 何环, 张倩, 赵晗, 任恒星, 陈林勇, 朱术云, 徐智敏, 黄再兴. 黄铁矿对煤生物产气和微生物群落结构的影响[J]. 微生物学报, 2023, 63(6): 2185-2203.LI XY, HE H, ZHANG Q, ZHAO H, REN HX, CHEN LY, ZHU SY, XU ZM, HUANG ZX. Influence of pyrite on biogenic coal bed methane production and microbial community structure[J]. Acta Microbiologica Sinica, 2023, 63(6): 2185-2203 (in Chinese).
    [14] 张亦雯, 郭红光, 李亚平, 李兴凤, 张攀攀. 过氧化氢预处理中/高煤阶煤增产生物甲烷研究[J]. 煤炭科学技术, 2019, 47(9): 262-267.ZHANG YW, GUO HG, LI YP, LI XF, ZHANG PP. Study on medium/high rank coal-producing methane with hydrogen peroxide pretreatment[J]. Coal Science and Technology, 2019, 47(9): 262-267 (in Chinese).
    [15] TAMAMURA S, MURAKAMI T, ARAMAKI N, UENO A, BADRUL AA, HAQ SR, IGARASHI T, KANEKO K. Reaction of lignite with dilute hydrogen peroxide to produce substrates for methanogens at in situ subsurface temperatures[J]. International Journal of Coal Geology, 2016, 167: 230-237.
    [16] ARAMAKI N, TAMAMURA S, UENO A, BADRUL AAKM, MURAKAMI T, TAMAZAWA S, YAMAGUCHI S, AOYAMA H, KANEKO K. Experimental investigation on the feasibility of industrial methane production in the subsurface environment via microbial activities in northern Hokkaido, Japan-a process involving subsurface cultivation and gasification[J]. Energy Conversion and Management, 2017, 153: 566-575.
    [17] HUANG ZX, URYNOWICZ MA, HAIDER R, SATTAR H, SALEEM M, HOANG L, HAN NT, TO KA, HUNG LQ, ALI MI, GUO H, HE H, LIU FJ. Biogenic methane generation from Vietnamese coal after pretreatment with hydrogen peroxide[J]. International Journal of Energy Research, 2021, 45(13): 18713-18721.
    [18] 代世峰, 唐跃刚, 姜尧发, 刘晶晶, 任德贻, 赵峰华, 赵蕾, 王西勃. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅰ: 镜质体[J]. 煤炭学报, 2021, 46(6): 1821-1832.DAI SF, TANG YG, JIANG YF, LIU JJ, REN DY, ZHAO FH, ZHAO L, WANG XB. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers, Ⅰ: vitrinite[J]. Journal of China Coal Society, 2021, 46(6): 1821-1832 (in Chinese).
    [19] 代世峰, 王绍清, 唐跃刚, 姜尧发, 任德贻, 赵蕾, 赵峰华, 邵龙义, 左建平. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅱ: 惰质体[J]. 煤炭学报, 2021, 46(7): 2212-2226.DAI SF, WANG SQ, TANG YG, JIANG YF, REN DY, ZHAO L, ZHAO FH, SHAO LY, ZUO JP. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers, Ⅱ: inertinite[J]. Journal of China Coal Society, 2021, 46(7): 2212-2226 (in Chinese).
    [20] 代世峰, 刘晶晶, 唐跃刚, 姜尧发, 任德贻, 赵峰华, 邵龙义, 赵蕾. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅲ: 腐植体[J]. 煤炭学报, 2021, 46(8): 2623-2636.DAI SF, LIU JJ, TANG YG, JIANG YF, REN DY, ZHAO FH, SHAO LY, ZHAO L. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers, Ⅲ: huminite[J]. Journal of China Coal Society, 2021, 46(8): 2623-2636 (in Chinese).
    [21] 代世峰, 赵蕾, 唐跃刚, 任德贻, 魏强, 姜尧发, 刘晶晶, 赵峰华. 煤的显微组分定义与分类(ICCP system 1994)解析Ⅳ: 类脂体[J]. 煤炭学报, 2021, 46(9): 2965-2983.DAI SF, ZHAO L, TANG YG, REN DY, WEI Q, JIANG YF, LIU JJ, ZHAO FH. An in-depth interpretation of definition and classification of macerals in coal (ICCP system 1994) for Chinese researchers, Ⅳ: liptinite[J]. Journal of China Coal Society, 2021, 46(9): 2965-2983 (in Chinese).
    [22] 王爱宽, 王庆晖. 褐煤有机显微组分生物气产出模拟实验研究[J]. 非常规油气, 2023, 10(2): 1-8, 42.WANG AK, WANG QH. Simulated experimental study of biogas generation from lignite and its organic maceral[J]. Unconventional Oil & Gas, 2023, 10(2): 1-8, 42 (in Chinese).
    [23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤岩分析样品制备方法: GB/T 16773—2008[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Method of preparing coal samples for the coal petrographic analysis: GB/T 16773—2008[S]. Beijing: Standards Press of China, 2008 (in Chinese).
    [24] 中华人民共和国国家质量监督检验检疫总局. 中国国家标准化管理委员会. 煤的显微组分组和矿物测定方法: GB/T 8899—2013[S]. 北京: 中国标准出版社, 2013.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Determination of maceral group composition and minerals in coal: GB/T 8899—2013[S]. Beijing: Standards Press of China, 2013 (in Chinese).
    [25] ZHANG WT, HUANG ZX, ZHANG D, MEDUNIĆ G, URYNOWICZ M, LIU FJ, GUO HG, HAIDER R, ALI MI, JAMAL A, HE H. Enhancement of biomethane production by huminite-enriched lignite pretreated with hydrogen peroxide[J]. International Journal of Coal Geology, 2023, 274: 104284.
    [26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法 仪器法: GB/T 30732—2014[S]. 北京: 中国标准出版社, 2014.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Proximate analysis of coal—Instrumental method: GB/T 30732—2014[S]. Beijing: Standards Press of China, 2014 (in Chinese).
    [27] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的元素分析: GB/T 31391—2015[S]. 北京: 中国标准出版社, 2015.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. Ultimate analysis of coal: GB/T 31391—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [28] JIANG JY, YANG WH, CHENG YP, LIU ZD, ZHANG Q, ZHAO K. Molecular structure characterization of middle-high rank coal via XRD, Raman and FTIR spectroscopy: implications for coalification[J]. Fuel, 2019, 239: 559-572.
    [29] HE XQ, LIU XF, NIE BS, SONG DZ. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel, 2017, 206: 555-563.
    [30] LI Y, CAO XY, ZHU DQ, CHAPPELL MA, MILLER LF, MAO JD. Characterization of coals and their laboratory-prepared black carbon using advanced solid-state 13C nuclear magnetic resonance spectroscopy[J]. Fuel Processing Technology, 2012, 96: 56-64.
    [31] WANG SQ, TANG YG, SCHOBERT HH, GUO YN, SU YF. FTIR and 13C NMR investigation of coal component of Late Permian coals from southern China[J]. Energy & Fuels, 2011, 25(12): 5672-5677.
    [32] LI Z, NI GH, WANG H, SUN Q, WANG G, JIANG BY, ZHANG C. Molecular structure characterization of lignite treated with ionic liquid via FTIR and XRD spectroscopy[J]. Fuel, 2020, 272: 117705.
    [33] 吴天才, 李斐洋, 于洋, 马永祥. 煤炭显微煤岩组分与工业分析关系研究[J]. 中国煤炭地质, 2022, 34(1): 13-17, 56.WU TC, LI FY, YU Y, MA YX. Study on relationship between coal macerals and proximate analysis[J]. Coal Geology of China, 2022, 34(1): 13-17, 56 (in Chinese).
    [34] 王美林, 陈林勇, 关嘉栋. 预处理时间对煤炭生物成气的影响研究[J]. 煤, 2018, 27(5): 7-9, 21.WANG ML, CHEN LY, GUAN JD. Study on the influence of pretreatment time on coal biogenic gas[J]. Coal, 2018, 27(5): 7-9, 21 (in Chinese).
    [35] 李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37(1): 125-127.LI JW, ZHANG MX. Coal sample pretreatment affected to biological degradation of Yima coal[J]. Coal Science and Technology, 2009, 37(1): 125-127 (in Chinese).
    [36] SABAR MA, ALI MI, FATIMA N, MALIK AY, JAMAL A, LIAQUAT R, HE H, LIU FJ, GUO HG, URYNOWICZ M, HUANG ZX. Evaluation of humic acids produced from Pakistani subbituminous coal by chemical and fungal treatments[J]. Fuel, 2020, 278: 118301.
    [37] 金徽. 中低阶煤有机显微组分生物气产出模拟实验研究[D]. 徐州: 中国矿业大学硕士学位论文, 2020.JIN H. The simulation experiment study on biogenic coalbed methane production from low and middle rank coal macerals[D]. Xuzhou: Master’s Thesis of China University of Mining and Technology, 2020 (in Chinese).
    [38] JONES EJP, HARRIS SH, BARNHART EP, OREM WH, CLARK AC, CORUM MD, KIRSHTEIN JD, VARONKA MS, VOYTEK MA. The effect of coal bed dewatering and partial oxidation on biogenic methane potential[J]. International Journal of Coal Geology, 2013, 115: 54-63.
    [39] GUO HG, HAN Q, ZHANG JL, LIANG WG, HUANG ZX, URYNOWICZ M, ALI MI. Available methane from anthracite by combining coal seam microflora and H2O2 pretreatment[J]. International Journal of Energy Research, 2021, 45(2): 1959-1970.
    [40] 张金龙. 化学预处理增产生物成因煤层气研究[D]. 太原: 太原理工大学硕士学位论文, 2017.ZHANG JL. Study on enhancing biogenic coalbed methane by chemical pretreatment[D]. Taiyuan: Master’s Thesis of Taiyuan University of Technology, 2017 (in Chinese).
    [41] MORGA R. Chemical structure of semifusinite and fusinite of steam and coking coal from the Upper Silesian Coal Basin (Poland) and its changes during heating as inferred from micro-FTIR analysis[J]. International Journal of Coal Geology, 2010, 84(1): 1-15.
    [42] 张宇宏, 白向飞, 丁华, 王越. 准东煤田煤岩特征与煤质及其工艺性能的关系研究[J]. 煤质技术, 2016(6): 1-6.ZHANG YH, BAI XF, DING H, WANG Y. The study on the relationship between the coal petrographic characteristics of Zhundong coal field and the coal quality or the process performance[J]. Coal Quality Technology, 2016(6): 1-6 (in Chinese).
    [43] 张小梅, 王绍清, 陈昊, 李雪琦, 张一岫. 低煤级煤的石墨化研究: 芳香结构演化特征[J]. 煤炭学报, 2022, 47(7): 2768-2778.ZHANG XM, WANG SQ, CHEN H, LI XQ, ZHANG YX. An investigation on the graphitization of low-rank coal: evolutional characteristics of aromatic structure[J]. Journal of China Coal Society, 2022, 47(7): 2768-2778 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张昊鹏,张丹,何环,任义,陈林勇,刘健,黄再兴. H2O2预处理胜利褐煤镜质组的生物产气研究[J]. 微生物学报, 2024, 64(6): 1960-1971

复制
分享
文章指标
  • 点击次数:168
  • 下载次数: 463
  • HTML阅读次数: 452
  • 引用次数: 0
历史
  • 收稿日期:2024-03-04
  • 最后修改日期:2024-04-09
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码