过氧化氢预处理对褐煤物化性质及生物产气的影响
作者:
基金项目:

中央高校基本科研业务费专项资金(2021ZDPY0210);国家自然科学基金(42172187)


Effects of hydrogen peroxide pretreatment on physicochemical properties and biogas production of lignite
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究过氧化氢预处理对褐煤物化性质及生物产气的影响。【方法】以胜利5号褐煤为研究对象,利用正交试验对过氧化氢预处理褐煤条件进行优化,在最优条件下处理褐煤得到处理后的残煤和处理液,通过X射线衍射分析(X-ray diffraction, XRD)、扫描电镜分析(scanning electron microscopy, SEM)、比表面积分析及孔隙分析(brunauer-emmett-teller, BET)、气相色谱-质谱分析(GC-MS)、高效液相色谱分析(HPLC)等方法对原煤、残煤和处理液的物化性质进行比较分析。【结果】经过氧化氢预处理,褐煤的最优条件为过氧化氢浓度5.0%、预处理时间20 d、液固比30:1,处理液中总有机碳含量为105 mg/L。在最优条件下,过氧化氢处理后残煤表面裂痕、凹陷增多,表面结构变得松散;煤的芳香面网间距增加,芳环结构更加疏松,晶核结构变小;孔隙度和比表面积均增大。处理后残煤中的固定碳、C元素和镜质组的相对含量降低,而灰分、挥发分、O和H元素及惰质组含量增加,残煤中O=C-O、C=C、C=O官能团含量增加,而N-H、C-H官能团含量则减少。生物产气结果表明反应液和残煤产气量均低于原煤,分别减少了39.13%和94.46%。过氧化氢预处理主要作用于煤中镜质组,使其有机碳溶解,煤中大分子结构的官能团发生变化,改变煤的芳环结构,在氧化作用下煤结构中的小分子溶解进入处理液。处理液中有机物以短链脂肪酸为主。经生物产气后,反应液中小分子酸以及有机物种类减少,被微生物利用产气。而各产气试验组中优势菌门及优势菌属的菌群丰度呈现出显著差异,古菌中原煤产气组盐杆菌门(Halobacteriota)为优势菌门,甲烷八叠球菌属(Methanosarcina)为优势菌属;反应液产气组热变形菌(Thermoprotei)为优势菌门,深古菌属(Bathyarchaeia)为优势菌属;细菌中原煤产气组放线菌门(Actinomycetota)为优势菌门,Gaiellales为优势菌属;反应液产气试验组假单胞菌门(Pseudomonadota)为优势菌门,代尔夫特菌属(Delftia)为优势菌属。【结论】煤溶解有机碳可以被微生物利用产气,但是煤中有机组分的过氧化脱除导致生物产气量减少。

    Abstract:

    [Objective] To investigate the effects of hydrogen peroxide treatment on the physicochemical properties and biogas production of lignite. [Methods] We carried out orthogonal experiments to optimize the conditions of hydrogen peroxide pretreatment for Shenli No.5 lignite. Lignite was treated under the optimal conditions to obtain coal residues and treatment solutions. The physicochemical properties, including elemental and maceral composition, mineral components, microcrystalline structure, porosity, permeability, surface morphology, organic functional groups, and organic composition in the treatment solution were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), brunauer-emmett-teller (BET), gas chromatography-mass spectrometry (GC-MS), and high-performance liquid chromatography (HPLC). The physicochemical properties were then compared among the raw coal, treated residue, and treatment solution. [Results] The optimal pretreatment conditions of lignite were treatment with 5.0% hydrogen peroxide at a liquid-to-solid ratio of 30:1 for 20 days, under which the total organic carbon yield in the treatment solution was 105 mg/L. After treatment under these optimal conditions, the treated residue exhibited increased cracks and dents on the surface and loosened surface structures. In addition, the interlayer spacing of the aromatic plains of the coal increased while the aromatic ring structure became more open with smaller crystal nucleus structures. Both porosity and specific surface area increased after the treatment. Compared with that before treatment, the treated residue showcased decreased fixed carbon, carbon, and vitrinite and increased ash, volatile matter, oxygen and hydrogen, and inertinite. The content of functional groups such as O=C-O, C=C, and C=O increased in the treated residue, while that of N-H and C-H reduced. The biogas production of the treatment solution and the treated residue was 39.13% and 94.46%, respectively, lower than that of raw coal. Hydrogen peroxide pretreatment primarily acted on vitrinite, dissolving organic carbon and altering the functional groups of large molecular structures in coal. This altered the aromatic ring structure of coal, causing small molecules to dissolve into the treatment solution under oxidative conditions. The organic compounds in the treatment solution mainly consisted of short-chain fatty acids. After biogas production, the number of low-molecule-weight acids and organic compounds decreased in the treatment solution. The relative abundance of dominant microbial phyla and genera varied significantly among different microcosms. Regarding the archaea for biogas production, the dominant phylum and genus were Halobacteriota and Methanosarcina in the raw coal and Thermoproteota and Bathyarchaeia in the treatment solution, respectively. In terms of the bacteria for biogas production, the dominant phylum and genus were Actinomycetota and Gaiellales in the raw coal and Pseudomonadota and Delftia in the treatment solution, respectively. [Conclusion] The organic carbon dissolved from coal can be utilized by microorganisms for biogas production. However, the removal of organic components by over-oxidation may decrease the biogas production.

    参考文献
    [1] 沈国娟, 张明旭, 王龙贵. 浅谈褐煤的利用途径[J]. 煤炭加工与综合利用, 2005(6): 25-27.SHEN GJ, ZHANG MX, WANG LG. Discussion on utilization ways of lignite[J]. Coal Processing and Comprehensive Utilization, 2005(6): 25-27 (in Chinese).
    [2] 张广超. 关于褐煤清洁利用途径及工艺方案选择的研究[J]. 化肥设计, 2013, 51(6): 11-14.ZHANG GC. Concerning clean utilization path of lignite and research on process scheme selection[J]. Chemical Fertilizer Design, 2013, 51(6): 11-14 (in Chinese).
    [3] 姚菁华, 肖雷, 纪洪敏. 褐煤的分级萃取及生物解聚研究[J]. 中国矿业大学学报, 2014, 43(1): 151-155.YAO JH, XIAO L, JI HM. Study of fractional extraction and biodepolymerization of lignite[J]. Journal of China University of Mining & Technology, 2014, 43(1): 151-155 (in Chinese).
    [4] XU XC, CHEN CH, QI HY, HE R, YOU CF, XIANG GM. Development of coal combustion pollution control for SO2 and NOx in China[J]. Fuel Processing Technology, 2000, 62(2/3): 153-160.
    [5] YAO JH, XIAO L, WANG LQ. Separation and analysis of lignite bioconversion products[J]. International Journal of Mining Science and Technology, 2012, 22(4): 529-532.
    [6] HUANG ZX, URYNOWICZ MA, COLBERG PJS. Stimulation of biogenic methane generation in coal samples following chemical treatment with potassium permanganate[J]. Fuel, 2013, 111: 813-819.
    [7] 张亦雯, 郭红光, 李亚平, 李兴凤, 张攀攀. 过氧化氢预处理中/高煤阶煤增产生物甲烷研究[J]. 煤炭科学技术, 2019, 47(9): 262-267.ZHANG YW, GUO HG, LI YP, LI XF, ZHANG PP. Study on medium/high rank coal-producing methane with hydrogen peroxide pretreatment[J]. Coal Science and Technology, 2019, 47(9): 262-267 (in Chinese).
    [8] 彭晶, 郭泽冲, 侯玲玲, 周爱娟, 杜静雯, 王爱杰. 热碱预处理对剩余污泥发酵产酸效能提升的影响[J]. 哈尔滨工业大学学报, 2012, 44(8): 43-47.PENG J, GUO ZC, HOU LL, ZHOU AJ, DU JW, WANG AJ. Improvement of acidification performance of waste activated sludge by thermal alkaline pretreatment[J]. Journal of Harbin Institute of Technology, 2012, 44(8): 43-47 (in Chinese).
    [9] 袁光环, 周兴求, 伍健东. 酸-碱预处理促进剩余污泥厌氧消化的研究[J]. 环境科学, 2012, 33(6): 1918-1922.YUAN GH, ZHOU XQ, WU JD. Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment[J]. Environmental Science, 2012, 33(6): 1918-1922 (in Chinese).
    [10] 贾雪梅, 周安宁, 刘博, 蔺亚兵, 常丽娜. 不同化学预处理对神府煤粉孔隙结构特征的影响[J]. 煤炭科学技术, 2013, 41(3): 120-124.JIA XM, ZHOU AN, LIU B, LIN YB, CHANG LN. Different chemical pre-treatment affected to pore structure features of Shenfu fine coal[J]. Coal Science and Technology, 2013, 41(3): 120-124 (in Chinese).
    [11] JONES EJP, HARRIS SH, BARNHART EP, OREM WH, CLARK AC, CORUM MD, KIRSHTEIN JD, VARONKA MS, VOYTEK MA. The effect of coal bed dewatering and partial oxidation on biogenic methane potential[J]. International Journal of Coal Geology, 2013, 115: 54-63.
    [12] 赵娜. 煤样预处理对褐煤生物成气的影响[J]. 煤, 2017, 26(4): 21-24.ZHAO N. Effect of the pretreatment of lignite on the biogenic gas production[J]. Coal, 2017, 26(4): 21-24 (in Chinese).
    [13] 赵星程, 王博, 冯炘, 解玉红. 褐煤生物甲烷产气量影响因素的初步探究[J]. 煤炭技术, 2018, 37(10): 106-109.ZHAO XC, WANG B, FENG X, XIE YH. Preliminary study on influencing factors of biomethane gas production from lignite[J]. Coal Technology, 2018, 37(10): 106-109 (in Chinese).
    [14] 李俊旺, 张明旭. 煤样预处理对义马煤生物降解的影响[J]. 煤炭科学技术, 2009, 37(1): 125-127.LI JW, ZHANG MX. Coal sample pretreatment affected to biological degradation of Yima coal[J]. Coal Science and Technology, 2009, 37(1): 125-127 (in Chinese).
    [15] HAQ SR, TAMAMURA S, IGARASHI T, KANEKO K. Characterization of organic substances in lignite before and after hydrogen peroxide treatment: implications for microbially enhanced coalbed methane[J]. International Journal of Coal Geology, 2018, 185: 1-11.
    [16] TAMAMURA S, MURAKAMI T, ARAMAKI N, UENO A, BADRUL AA, HAQ SR, IGARASHI T, KANEKO K. Reaction of lignite with dilute hydrogen peroxide to produce substrates for methanogens at in situ subsurface temperatures[J]. International Journal of Coal Geology, 2016, 167: 230-237.
    [17] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的工业分析方法 仪器法: GB/T 30732—2014[S]. 北京: 中国标准出版社, 2014.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Proximate analysis of coal—Instrumental method: GB/T 30732—2014[S]. Beijing: Standards Press of China, 2014 (in Chinese).
    [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的元素分析: GB/T 31391—2015[S]. 北京: 中国标准出版社, 2015.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Ultimate analysis of coal: GB/T 31391—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [19] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤岩分析样品制备方法: GB/T 16773—2008[S]. 北京: 中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method of preparing coal samples for the coal petrographic analysis: GB/T 16773—2008[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [20] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的显微组分组和矿物测定方法: GB/T 8899—2013[S]. 北京: 中国标准出版社, 2014.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of maceral group composition and minerals in coal: GB/T 8899—2013[S]. Beijing: Standards Press of China, 2014 (in Chinese).
    [21] 高涛, 冯松宝. 煤的显微组分特征研究综述[J]. 能源技术与管理, 2021, 46(4): 15-16, 20.GAO T, FENG SB. Literature review on property of macerals of coals[J]. Energy Technology and Management, 2021, 46(4): 15-16, 20 (in Chinese).
    [22] 谭凯丽, 宋燕莉, 牛江露. 强氧化处理和微生物作用对煤样结构和成气的影响[J]. 贵州大学学报(自然科学版), 2018, 35(6): 58-61.TAN KL, SONG YL, NIU JL. The effects of strong oxidation treatment and microbial action on coal sample structure and gas formation[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(6): 58-61 (in Chinese).
    [23] MAO YQ, XIA WC, PENG YL, XIE GY. Wetting of coal pores characterized by LF-NMR and its relationship to flotation recovery[J]. Fuel, 2020, 272: 117737.
    [24] JI PF, LIN HF, KONG XG, LI SG, HU B, WANG P, HE D, YANG SR. Pore structure of low-permeability coal and its deformation characteristics during the adsorption-desorption of CH4/N2[J]. International Journal of Coal Science & Technology, 2023, 10(1): 51.
    [25] PU Y, ZENG Q, CAO ZM, JIN SK, ZHAO LH. Experimental study of the production of typical pollutants from underground coal fires[M]//Land Reclamation in Ecological Fragile Areas. Xi’an: CRC Press, 2017: 521-527.
    [26] ZENG Q, SHEN L. Experimental study on the oxidation kinetics of coal in typical coal mining areas of the Southern Junggar Coalfield, Xinjiang, China[J]. International Journal of Coal Science & Technology, 2022, 9(1): 78.
    [27] QIAN L, XUE JK, TAO C, MA C, JIANG XP, GUO FQ. Effect of demineralization on pyrolysis characteristics of LPS coal based on its chemical structure[J]. International Journal of Coal Science & Technology, 2023, 10(1): 21.
    [28] 刘喜乐. 生物产气与煤结构演变的相互作用特征研究[D]. 焦作: 河南理工大学硕士学位论文, 2018.LIU XL. The interaction characteristics between biogas generation and coal structure evolution[D]. Jiaozuo: Master’s Thesis of Henan Polytechnic University, 2018 (in Chinese).
    [29] LIU JB, JIA RL, WANG YW, WEI YS, ZHANG JY, WANG R, CAI X. Does residual H2O2 result in inhibitory effect on enhanced anaerobic digestion of sludge pretreated by microwave-H2O2 pretreatment process?[J]. Environmental Science and Pollution Research, 2017, 24(10): 9016-9025.
    [30] MAE K, SHINDO H, MIURA K. A new two-step oxidative degradation method for producing valuable chemicals from low rank coals under mild conditions[J]. Energy & Fuels, 2001, 15(3): 611-617.
    [31] BOU-RAAD M, HOBDAY MD, RIX CJ. Aqueous extraction of oxalate and other anions from coal[J]. Fuel, 2000, 79(10): 1185-1193.
    [32] HUANG ZX, URYNOWICZ MA, COLBERG PJS. Bioassay of chemically treated subbituminous coal derivatives using Pseudomonas putida F1[J]. International Journal of Coal Geology, 2013, 115: 97-105.
    [33] CHEN TY, RODRIGUES S, GOLDING SD, RUDOLPH V. Improving coal bioavailability for biogenic methane production via hydrogen peroxide oxidation[J]. International Journal of Coal Geology, 2018, 195: 402-414.
    [34] PAN CX, WEI XY, SHUI HF, WANG ZC, GAO J, WEI C, CAO XZ, ZONG ZM. Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization[J]. Fuel, 2013, 109: 49-53.
    [35] TARVIN D, BUSWELL AM. The methane fermentation of organic acids and carbohydrates[J]. Journal of the American Chemical Society, 1934, 56(8): 1751-1755.
    [36] CZERKAWSKI JW, BRECKENRIDGE G. Fermentation of various glycolytic intermediates and other compounds by rumen micro-organisms, with particular reference to methane production[J]. The British Journal of Nutrition, 1972, 27(1): 131-146.
    [37] 杨玉亮, 贾奇锋. 不同煤阶煤的生物产气特征差异研究[J]. 煤炭科学技术, 2022, 50(10): 242-250.YANG YL, JIA QF. Study on difference of biogas production in different rank coal[J]. Coal Science and Technology, 2022, 50(10): 242-250 (in Chinese).
    [38] LIU FJ, GUO HG, WANG QR, HAIDER R, URYNOWICZ MA, FALLGREN PH, JIN S, TANG MC, CHEN B, HUANG ZX. Characterization of organic compounds from hydrogen peroxide-treated subbituminous coal and their composition changes during microbial methanogenesis[J]. Fuel, 2019, 237: 1209-1216.
    [39] STRĄPOĆ D, MASTALERZ M, DAWSON K, MACALADY J, CALLAGHAN AV, WAWRIK B, TURICH C, ASHBY M. Biogeochemistry of microbial coal-bed methane[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 617-656.
    [40] WARWICK PD, BRELAND FC Jr, HACKLEY PC. Biogenic origin of coalbed gas in the northern Gulf of Mexico Coastal Plain, U.S.A.[J]. International Journal of Coal Geology, 2008, 76(1/2): 119-137.
    [41] ZHANG J, PARK SY, LIANG YN, HARPALANI S. Finding cost-effective nutrient solutions and evaluating environmental conditions for biogasifying bituminous coal to methane ex situ[J]. Applied Energy, 2016, 165: 559-568.
    [42] WEI M, YU ZS, JIANG Z, ZHANG HX. Microbial diversity and biogenic methane potential of a thermogenic-gas coal mine[J]. International Journal of Coal Geology, 2014, 134/135: 96-107.
    [43] ZHANG J, LIANG YN, PANDEY R, HARPALANI S. Characterizing microbial communities dedicated for conversion of coal to methane in situ and ex situ[J]. International Journal of Coal Geology, 2015, 146: 145-154.
    [44] GALLAGHER LK, GLOSSNER AW, LANDKAMER LL, FIGUEROA LA, MANDERNACK KW, MUNAKATA-MARR J. The effect of coal oxidation on methane production and microbial community structure in Powder River Basin coal[J]. International Journal of Coal Geology, 2013, 115: 71-78.
    [45] GUO HG, LIU RY, YU ZS, ZHANG HX, YUN JL, LI YM, LIU X, PAN JG. Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China[J]. International Journal of Coal Geology, 2012, 93: 56-61.
    [46] SU XB, ZHAO WZ, XIA DP. The diversity of hydrogen-producing bacteria and methanogens within an in situ coal seam[J]. Biotechnology for Biofuels, 2018, 11: 245.
    [47] 谢娟娟. 深古菌乙酸代谢和光合作用特殊基因的起源[D]. 上海: 上海交通大学硕士学位论文, 2017.XIE JJ. The origin of acetate metablism and photosynthesis-specific genes from bathyarchaea[D]. Shanghai: Master’s Thesis of Shanghai Jiao Tong University, 2017 (in Chinese).
    [48] SHIMIZU S, AKIYAMA M, NAGANUMA T, FUJIOKA M, NAKO M, ISHIJIMA Y. Molecular characterization of microbial communities in deep coal seam groundwater of northern Japan[J]. Geobiology, 2007, 5(4): 423-433.
    [49] 承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5): 1143-1164.CHENG L, ZHENG ZZ, WANG C, ZHANG H. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5): 1143-1164 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏雨萌,任义,何环,赵晗,任恒星,陈林勇,黄再兴. 过氧化氢预处理对褐煤物化性质及生物产气的影响[J]. 微生物学报, 2024, 64(6): 1972-1991

复制
分享
文章指标
  • 点击次数:262
  • 下载次数: 465
  • HTML阅读次数: 565
  • 引用次数: 0
历史
  • 收稿日期:2024-04-03
  • 最后修改日期:2024-05-22
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码