一株台湾红酵母(Rhodotorula taiwanensis)的鉴定及其除Mn(Ⅱ)性能研究
作者:
基金项目:

国家自然科学基金(U20A20325);安徽省重点研究与开发计划(2022107020015)


Identification of a Rhodotorula taiwanensis strain capable of removing Mn(Ⅱ)
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究一株红酵母对Mn(Ⅱ)的去除效率及其作用机制。【方法】从酸性矿山废水中分离出一株耐酸酵母菌,通过形态和26S rRNA基因测序对菌种进行鉴定,研究不同pH和Mn(Ⅱ)浓度对该菌除Mn(Ⅱ)效果的影响。采用扫描电镜、X射线衍射分析和X射线光电子能谱仪进行产物表征。【结果】分离得到的酵母菌经鉴定为台湾红酵母(Rhodotorula taiwanensis),其在pH 2.0、2 000 mg/L Mn(Ⅱ)条件下仍能生长较好。在初始pH 6.0、Mn(Ⅱ) 300 mg/L条件下培养144 h后,对Mn(Ⅱ)的去除率能达到98.52%;然而较高浓度的Mn(Ⅱ) (≥500 mg/L)会对细胞产生毒性,从而降低去除效果。R. taiwanensis MF4在去除Mn(Ⅱ)的过程中可以将Mn(Ⅱ)氧化成锰氧化物(主要为无定型的MnO2、Mn2O3、MnO),形成层状物质在细胞表面积累,而且能产生碱度,提升环境pH值,最高可达8.4 [初始pH 7.0,Mn(II) 100 mg/L,144 h]。【结论】R. taiwanensis MF4具有耐受低pH和高浓度Mn(II)、有效去除Mn(II)以及产碱的作用,研究结果对酸性矿山废水修复与治理的末端工艺设计具有参考价值。

    Abstract:

    [Objective] To investigate the removal efficiency and mechanism by a strain of Rhodotorula. [Methods] The strain was identified based on the morphological characteristics and the phylogenetic tree based on 26S rRNA gene sequences. Then, the removal effect of the strain on Mn(II) was studied at different initial pH and Mn(II) concentrations. Finally, the products were characterized by scanning electron microscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. [Results] The isolate was identified as Rhodotorula taiwanensis, which could grow well at pH 2.0 and 2 000 mg/L Mn(II). The removal rate of Mn(Ⅱ) by the strain reached 98.52% at the initial pH 6.0 and Mn(II) concentration of 300 mg/L after 144 h, while higher concentrations (≥500 mg/L) of Mn(II) caused toxicity to the cells and weakened the removal effect. The strain could oxidize Mn(II) to manganese oxides (mainly amorphous MnO2, Mn2O3, and MnO), which produced layered minerals accumulated on the cell surface. In addition, the process of removing Mn(II) by the strain increased the pH of the medium (initial pH 7.0, Mn(II) concentration of 100 mg/L) up to 8.4 after 144 h. [Conclusion] R. taiwanensis MF4 isolated in this study can tolerate low pH and high concentrations of Mn(II), remove Mn(II), and increase medium pH. The findings have a reference value for the end process design in the remediation and treatment of acid mine drainage.

    参考文献
    [1] DU T, BOGUSH A, MASEK O, PURTON S, CAMPOS LC. Algae, biochar and bacteria for acid mine drainage (AMD) remediation: a review[J]. Chemosphere, 2022, 304: 135284.
    [2] WANG C, WANG J, HE X, CHUAI X, WANG S, YUE Z. Effective removal of Mn(Ⅱ) from acidic wastewater using a novel acid tolerant fungi Aspergillus sp. MF1 via immobilization[J]. Journal of Hazardous Materials Advances, 2023, 10: 100301.
    [3] PAN X, YUE Z, SHE Z, HE X, WANG S, CHUAI X, WANG J. Eukaryotic community structure and interspecific interactions in a stratified acidic pit lake water in Anhui Province[J]. Microorganisms, 2023, 11(4): 979.
    [4] YAMAN NB, AYTAR ÇELIK P, MUTLU MB, ÇABUK A. A combinational analysis of acidophilic bacterial diversity of an iron-rich environment[J]. Geomicrobiology Journal, 2020, 37(10): 877-889.
    [5] 陈明珠, 张林义, 岳正波, 潘鑫, 王绍平, 李伟, 罗长海, 刘兵, 王进. 酸性矿山废水中锰氧化菌的分离鉴定及其对Mn2+的去除作用[J]. 环境科学学报, 2022, 42(9): 30-39.CHEN MZ, ZHANG LY, YUE ZB, PAN X, WANG SP, LI W, LUO CH, LIU B, WANG J. Isolation and identification of manganese oxidizing bacteria from acid mine wastewater and its effect on the removal of Mn2+[J]. Acta Scientiae Circumstantiae, 2022, 42(9): 30-39 (in Chinese)
    [6] CHEN H, XIAO T, NING Z, LI Q, XIAO E, LIU Y, XIAO Q, LAN X, MA L, LU F. In-situ remediation of acid mine drainage from abandoned coal mine by filed pilot-scale passive treatment system: performance and response of microbial communities to low pH and elevated Fe[J]. Bioresource Technology, 2020, 317: 123985.
    [7] HALLBERG KB, JOHNSON DB. Biological manganese removal from acid mine drainage in constructed wetlands and prototype bioreactors[J]. Science of the Total Environment, 2005, 338(1/2): 115-124.
    [8] XU T, ROEPKE EW, FLYNN ED, ROSENFELD CE, BALGOOYEN S, GINDER-VOGEL M, SCHULER CJ, SANTELLI CM. Aqueous Co removal by mycogenic Mn oxides from simulated mining wastewaters[J]. Chemosphere, 2023, 327: 138467.
    [9] WANG Y, BAI Y, SU J, ALI A, GAO Z, HUANG T, CAO M, REN M. Advances in microbially mediated manganese redox cycling coupled with nitrogen removal in wastewater treatment: a critical review and bibliometric analysis[J]. Chemical Engineering Journal, 2023, 461: 141878.
    [10] AL-ABED SR, PINTO PX, MCKERNAN J, FELD-COOK E, LOMNICKI SM. Mechanisms and effectivity of sulfate reducing bioreactors using a chitinous substrate in treating mining influenced water[J]. Chemical Engineering Journal, 2017, 323: 270-277.
    [11] LIU S, GARCIA-PALACIOS P, TEDERSOO L, GUIRADO E, van der HEIJDEN MGA, WAGG C, CHEN D, WANG Q, WANG J, SINGH BK, DELGADO-BAQUERIZO M. Phylotype diversity within soil fungal functional groups drives ecosystem stability[J]. Nature Ecology and Evolution, 2022, 6: 900-909.
    [12] RUAS FAD, AMORIM SS, LEAO VA, GUERRA-SA R. Rhodotorula mucilaginosa isolated from the manganese mine water in Minas Gerais, Brazil: potential employment for bioremediation of contaminated water[J]. Water Air Soil Pollution, 2020, 231(10): 527.
    [13] FADEL M, HASSANEIN NM, ELSHAFEI MM, MOSTAFA AH, AHMED MA, KHATER HM. Biosorption of manganese from groundwater by biomass of Saccharomyces cerevisiae[J]. HBRC Journal, 2019, 13(1): 106-113.
    [14] WANG M, XU Z, HUANG Y, DONG B. Static magnetic field enhances Cladosporium sp. XM01 growth and fungal Mn(II) oxidation[J]. Journal of Hazardous Materials, 2022, 437: 129332.
    [15] van NGUYEN P, THI HONG TRUONG H, PHAM TA, CONG T, LE T, THI NGUYEN KC. Removal of manganese and copper from aqueous solution by yeast Papiliotrema huenov[J]. Mycobiology, 2021, 49(5): 507-520.
    [16] HUANG Y, HUANGFU X, MA C, LIU Z. Sequestration and oxidation of heavy metals mediated by Mn(II) oxidizing microorganisms in the aquatic environment[J]. Chemosphere, 2023, 329: 138594.
    [17] TKAVC R, MATROSOVA VY, GRICHENKO OE, GOSTINCAR C, VOLPE RP, KLIMENKOVA P, GAIDAMAKOVA EK, ZHOU CE, STEWART BJ, LYMAN MG, MALFATTI SA, RUBINFELD B, COURTOT M, SINGH J, DALGARD CL, HAMILTON T, FREY KG, GUNDE-CIMERMAN N, DUGAN L, DALY MJ. Prospects for fungal bioremediation of acidic radioactive waste sites: characterization and genome sequence of Rhodotorula taiwanensis MD1149[J]. Frontiers in Microbiology, 2018, 8: 2528.
    [18] MAPOLELO M. Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae[J]. Talanta, 2004, 64(1): 39-47.
    [19] HUANG HM, ZHAO YL, XU ZG, DING Y, ZHANG W, WU L. Biosorption characteristics of a highly Mn(II)-resistant Ralstonia pickettii strain isolated from Mn ore[J]. PLoS One, 2018, 13(8): e0203285.
    [20] 张露, 邵锐, 潘鑫, 王绍平, 王广成, 李伟, 岳正波, 王进. 一株耐酸微藻的分离鉴定及其对锰离子胁迫的生理响应[J]. 微生物学报, 2021, 61(6): 1371-1382.ZHANG L, SHAO R, PAN X, WANG SP, WANG GC, LI W, YUE ZB, WANG J. Isolation and identification of an acid-tolerant microalgae and its physiological response to manganese ion stress[J]. Acta Microbiologica Sinica, 2021, 61(6): 1371-1382 (in Chinese)
    [21] MIAO Z, TIAN X, LIANG W, HE Y, WANG G. Bioconversion of corncob hydrolysate into microbial lipid by an oleaginous yeast Rhodotorula taiwanensis AM2352 for biodiesel production[J]. Renewable Energy, 2020, 161: 91-97.
    [22] USLU G, TANYOL M. Equilibrium and thermodynamic parameters of single and binary mixture biosorption of lead (II) and copper (II) ions onto Pseudomonas putida: effect of temperature[J]. Journal of Hazardous Materials, 2006, 135: 87-93.
    [23] AMORIM SS, RUAS FAD, BARBOZA NR, de OLIVEIRA NEVES VG, LEAO VA, GUERRA-SA R. Manganese (Mn2+) tolerance and biosorption by Meyerozyma guilliermondii and Meyerozyma caribbica strains[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 4538-4545.
    [24] PENG H, LI D, YE J, XU H, XIE W, ZHANG Y, WU M, XU L, LIANG Y, LIU W. Biosorption behavior of the Ochrobactrum MT180101 on ionic copper and chelate copper[J]. Journal of Environmental Management, 2019, 235: 224-230.
    [25] BURGER MS, MERCER SS, SHUPE GD, GAGNON GA. Manganese removal during bench-scale biofiltration[J]. Water Research, 2008, 42(19): 4733-4742.
    [26] WANG M, XU Z, DONG B, ZENG Y, CHEN S, ZHANG Y, HUANG Y, PEI X. An efficient manganese-oxidizing fungus Cladosporium halotolerans strain XM01: Mn(II) oxidization and Cd adsorption behavior[J]. Chemosphere, 2022, 287(1): 132026.
    [27] LI D, LI R, DING Z, RUAN X, LUO J, CHEN J, ZHENG J, TANG J. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils[J]. Chemosphere, 2020, 241: 125039.
    [28] XU ZG, DING Y, HUANG HM, WU L, ZHAO YL, YANG GY. Biosorption characteristics of Mn(II) by Bacillus cereus strain HM-5 isolated from soil contaminated by manganese ore[J]. Polish Journal of Environmental Studies, 2018, 28(1): 463-472.
    [29] MEISTER P, HERDA G, PETRISHCHEVA E, GIER S, DICKENS GR, BAUER C, LIU B. Microbial alkalinity production and silicate alteration in methane charged marine sediments: implications for porewater chemistry and diagenetic carbonate formation[J]. Frontiers in Earth Science, 2022, 9: 756591.
    [30] CALDERON-TOVAR IL, RIETVELD LC, ARAYA-OBANDO JA, QUESADA-GONZALEZ A, CABALLERO-CHAVARRIA A, ROMERO-ESQUIVEL LG. Autochthonous tropical groundwater bacteria involved in manganese(II) oxidation and removal[J]. Environmental Science: Water Research & Technology, 2020, 6(11): 3132-3141.
    [31] FERRIER J, CSETENYI L, GADD GM. Fungal transformation of natural and synthetic cobalt-bearing manganese oxides and implications for cobalt biogeochemistry[J]. Environmental Microbiology, 2022, 24(2): 667-677.
    [32] HOLGUERA JG, ETUI ID, JENSEN LHS, PENA J. Contaminant loading and competitive access of Pb, Zn and Mn(III) to vacancy sites in biogenic MnO2[J]. Chemical Geology, 2018, 502: 76-87.
    [33] YANG P, POST JE, WANG Q, XU W, GEISS R, MCCURDY PR, ZHU M. Metal adsorption controls stability of layered manganese oxides[J]. Environmental Science & Technology, 2019, 53(13): 7453-7462.
    [34] SOLDATOVA AV, ROMANO CA, TAO L, STICH TA, CASEY WH, BRITT RD, TEBO BM, SPIRO TG. Mn(II) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism[J]. Journal of the American Chemical Society, 2017, 139(33): 11381-11391.
    [35] CHERNEV P, FISCHER S, HOFFMANN J, OLIVER N, ASSUNCAO R, YU B, BURNAP RL, ZAHARIEVA I, NURNBERG DJ, HAUMANN M, DAU H. Light-driven formation of manganese oxide by today’s photosystem II supports evolutionarily ancient manganese-oxidizing photosynthesis[J]. Nature Communications, 2020, 11: 1-10.
    [36] LIANG J, BAI Y, MEN Y, QU J. Microbe-microbe interactions trigger Mn(II)-oxidizing gene expression[J]. International Society for Microbial Ecology, 2016, 11(1): 67-77.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

贺笑,岳正波,尹家顺,王绍平,刘文胜,张先昂,揣新,王进. 一株台湾红酵母(Rhodotorula taiwanensis)的鉴定及其除Mn(Ⅱ)性能研究[J]. 微生物学报, 2024, 64(6): 2104-2114

复制
分享
文章指标
  • 点击次数:120
  • 下载次数: 444
  • HTML阅读次数: 268
  • 引用次数: 0
历史
  • 收稿日期:2023-10-08
  • 最后修改日期:2024-02-27
  • 在线发布日期: 2024-06-12
  • 出版日期: 2024-06-04
文章二维码