不同血清型肉毒毒素受体结合域研究进展
作者:
基金项目:

病原微生物生物安全全国重点实验室课题(SKLPBS2223)


Research progress in receptor-binding domains of different serotypes of botulinum neurotoxins
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肉毒毒素(botulinum neurotoxin, BoNT)是人类已知毒性最强的蛋白质之一,可以引起肌肉松弛麻痹,严重时可导致死亡。肉毒毒素共分为7种血清型(BoNT/A-BoNT/G),根据氨基酸序列差异可进一步分为40多种亚型。肉毒毒素分子结构由3个基本结构域组成:重链羧基端细胞受体结合域、氨基端的易位域和轻链催化域。在运动神经元表面,受体结合域首先与聚唾液酸神经节苷脂结合,随后与突触囊泡蛋白2或突触囊泡结合蛋白结合形成双受体复合物。每种血清型的受体结合域都必须与其相应受体结合才能发挥作用。肉毒毒素的结构功能及其对宿主的作用一直都是研究热点。近年来,因受体结合域可以促进肉毒毒素与运动神经元膜特异性结合,而成为新的研究方向。本综述将概述不同血清型肉毒毒素与受体结合过程中受体结合域结构变化和结合位点差异。通过分析不同血清型及亚型的序列以及受体结合域结构特征,可以更好地了解细胞受体结合域的序列差异和功能,并为肉毒毒素的治疗策略提供新思路。

    Abstract:

    Botulinum neurotoxins (BoNTs), a group of the most toxic proteins, can cause muscle paralysis and even lead to death in severe cases. BoNTs can be classified into 7 serotypes (BoNT/A-BoNT/G) and further classified into more than 40 subtypes according to the differences in amino acid sequences. BoNTs consist of three basic domains: the C-terminal receptor-binding domain of the heavy chain, the N-terminal translocation domain, and the light-chain catalytic domain. On the surface of motor neurons, the receptor-binding domain binds first to polysialoganglioside and subsequently to synaptic vesicle protein 2 or synaptotagmin to form a two-receptor complex. The functioning of each serotype relies on the binding of the receptor-binding domain to the corresponding receptor. BoNTs have always been a research hotspot in terms of the structure, function, and effect on the host. The role of the receptor-binding domain in promoting the specific binding of BoNTs to motor neurons has become a new research direction. This review summarizes the structural changes of the receptor-binding domains and the differences in binding sites during the binding of different serotypes of BoNTs to receptors. By analyzing the sequences and structural characteristics of the receptor-binding domains of different serotypes and subtypes, we can fully understand the sequence differences and functions of the receptor-binding domain and give insights into the treatment of BoNTs.

    参考文献
    [1] ROSSETTO O, PIRAZZINI M, MONTECUCCO C. Botulinum neurotoxins: genetic, structural and mechanistic insights[J]. Nature Reviews Microbiology, 2014, 12: 535-549.
    [2] PECK MW, STRINGER SC, CARTER AT. Clostridium botulinum in the post-genomic era[J]. Food Microbiology, 2011, 28(2): 183-191.
    [3] GREGORY KS, LIU SM, ACHARYA KR. Crystal structure of botulinum neurotoxin subtype A3 cell binding domain in complex with GD1a co-receptor ganglioside[J]. FEBS Open Bio, 2020, 10(3): 298-305.
    [4] MASUYER G, CHADDOCK JA, FOSTER KA, ACHARYA KR. Engineered botulinum neurotoxins as new therapeutics[J]. Annual Review of Pharmacology and Toxicology, 2014, 54: 27-51.
    [5] FAN YF, BARASH JR, CONRAD F, LOU JL, TAM C, CHENG LW, ARNON SS, MARKS JD. The novel clostridial neurotoxin produced by strain IBCA10-7060 is immunologically equivalent to BoNT/HA[J]. Toxins, 2019, 12(1): 9.
    [6] GONZALEZ-ESCALONA N, THIRUNAVUKKARASU N, SINGH A, TORO M, BROWN EW, ZINK D, RUMMEL A, SHARMA SK. Draft genome sequence of bivalent Clostridium botulinum strain IBCA10-7060, encoding botulinum neurotoxin B and a new FA mosaic type[J]. Genome Announcements, 2014, 2(6): e01275-14.
    [7] NAKAMURA K, KOHDA T, SETO Y, MUKAMOTO M, KOZAKI S. Improved detection methods by genetic and immunological techniques for botulinum C/D and D/C mosaic neurotoxins[J]. Veterinary Microbiology, 2013, 162(2/3/4): 881-890.
    [8] NAKAMURA K, KOHDA T, UMEDA K, YAMAMOTO H, MUKAMOTO M, KOZAKI S. Characterization of the D/C mosaic neurotoxin produced by Clostridium botulinum associated with bovine botulism in Japan[J]. Veterinary Microbiology, 2010, 140(1/2): 147-154.
    [9] KOŠENINA S, MASUYER G, ZHANG SC, DONG M, STENMARK P. Crystal structure of the catalytic domain of the Weissella oryzae botulinum-like toxin[J]. FEBS Letters, 2019, 593(12): 1403-1410.
    [10] TANIZAWA Y, FUJISAWA T, MOCHIZUKI T, KAMINUMA E, SUZUKI Y, NAKAMURA Y, TOHNO M. Draft genome sequence of Weissella oryzae SG25T, isolated from fermented rice grains[J]. Genome Announcements, 2014, 2(4): e00667-14.
    [11] ZORNETTA I, AZARNIA TEHRAN D, ARRIGONI G, ANNIBALLI F, BANO L, LEKA O, ZANOTTI G, BINZ T, MONTECUCCO C. The first non Clostridial botulinum-like toxin cleaves VAMP within the juxtamembrane domain[J]. Scientific Reports, 2016, 6: 30257.
    [12] BRUNT J, CARTER AT, STRINGER SC, PECK MW. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus[J]. FEBS Letters, 2018, 592(3): 310-317.
    [13] ZHANG SC, LEBRETON F, MANSFIELD MJ, MIYASHITA SI, ZHANG J, SCHWARTZMAN JA, TAO L, MASUYER G, MARTÍNEZ-CARRANZA M, STENMARK P, GILMORE MS, DOXEY AC, DONG M. Identification of a botulinum neurotoxin-like toxin in a commensal strain of Enterococcus faecium[J]. Cell Host and Microbe, 2018, 23(2): 169-176.e6.
    [14] CONTRERAS E, MASUYER G, QURESHI N, CHAWLA S, DHILLON HS, LEE HL, CHEN JW, STENMARK P, GILL SS. A neurotoxin that specifically targets Anopheles mosquitoes[J]. Nature Communications, 2019, 10: 2869.
    [15] CHEN ZP, MORRIS JG Jr, RODRIGUEZ RL, SHUKLA AW, TAPIA-NÚÑEZ J, OKUN MS. Emerging opportunities for serotypes of botulinum neurotoxins[J]. Toxins, 2012, 4(11): 1196-1222.
    [16] HILL KK, XIE G, FOLEY BT, SMITH TJ. Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins[J]. Toxicon, 2015, 107: 2-8.
    [17] 谭玲, 王建新, 王慧. 肉毒神经毒素抑制剂的研究进展[J]. 微生物学报, 2022, 62(4): 1270-1285. TAN L, WANG JX, WANG H. Research advances in inhibitors of botulinum neurotoxins[J]. Acta Microbiologica Sinica, 2022, 62(4): 1270-1285(in Chinese).
    [18] MASUYER G, DAVIES JR, STENMARK P. Mechanism of ganglioside receptor recognition by botulinum neurotoxin serotype E[J]. International Journal of Molecular Sciences, 2021, 22(15): 8315.
    [19] WANG JX, WU YL, LUO DY, ZHUANG CL, NING NZ, ZHANG YM, HE ZL, GAO J, HONG ZY, XV X, ZHANG WN, LI T, MIAO ZY, WANG H. Discovery of a potent botulinum neurotoxin A inhibitor ZM299 with effective protections in botulism mice[J]. Chinese Journal of Chemistry, 2022, 40(3): 357-364.
    [20] 罗森, 丁朋晓, 李涛, 王琴, 王慧. 基于FRET技术构建破伤风毒素和B型肉毒毒素酶类抑制剂高通量体外筛选方法[J]. 安徽医科大学学报, 2018, 53(5): 739-745. LUO S, DING PX, LI T, WANG Q, WANG H. High throughput in vitro screening method for tetanus toxin and botulinum neurotoxin type B inhibitors based on FRET technology[J]. Acta Universitatis Medicinalis Anhui, 2018, 53(5): 739-745(in Chinese).
    [21] 杨秀清, 王慧, 史晶, 蔡昆, 侯晓军, 包士中, 荫俊. 鼠源抗B型肉毒毒素单链抗体噬菌体文库的构建筛选及抗体免疫学活性的初步研究[J]. 微生物学通报, 2007, 34(6): 1037-1041. YANG XQ, WANG H, SHI J, CAI K, HOU XJ, BAO SZ, YIN J. Construction and screening of a phage display library of repertoire single chain fv antibody from mouse immunized with BoNTB/hc[J]. Microbiology China, 2007, 34(6): 1037-1041(in Chinese).
    [22] TIAN RM, WIDEL M, IMANIAN B. The light chain domain and especially the C-terminus of receptor-binding domain of the botulinum neurotoxin (BoNT) are the hotspots for amino acid variability and toxin type diversity[J]. Genes, 2022, 13(10): 1915.
    [23] KROKEN AR, KARALEWITZ APA, FU ZJ, BALDWIN MR, KIM JJP, BARBIERI JT. Unique ganglioside binding by botulinum neurotoxins C and D-SA[J]. The FEBS Journal, 2011, 278(23): 4486-4496.
    [24] DAVIES JR, LIU SM, ACHARYA KR. Variations in the botulinum neurotoxin binding domain and the potential for novel therapeutics[J]. Toxins, 2018, 10(10): 421.
    [25] TSUKAMOTO K, KOHDA T, MUKAMOTO M, TAKEUCHI K, IHARA H, SAITO M, KOZAKI S. Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins[J]. The Journal of Biological Chemistry, 2005, 280(42): 35164-35171.
    [26] YOWLER BC, SCHENGRUND CL. Glycosphingolipids: sweets for botulinum neurotoxin[J]. Glycoconjugate Journal, 2004, 21(6): 287-293.
    [27] GILLARD M, CHATELAIN P, FUKS B. Binding characteristics of levetiracetam to synaptic vesicle protein 2A (SV2A) in human brain and in CHO cells expressing the human recombinant protein[J]. European Journal of Pharmacology, 2006, 536(1/2): 102-108.
    [28] GOWER AJ, NOYER M, VERLOES R, GOBERT J, WÜLFERT E. Ucb L059, a novel anti-convulsant drug: pharmacological profile in animals[J]. European Journal of Pharmacology, 1993, 230(3): 389.
    [29] GOUTAL S, GUILLERMIER M, BECKER G, GAUDIN M, BRAMOULLÉ Y, LUXEN A, LEMAIRE C, PLENEVAUX A, SALMON E, HANTRAYE P, BARRET O, van CAMP N. The pharmacokinetics of [18F]UCB-H revisited in the healthy non-human primate brain[J]. EJNMMI Research, 2021, 11(1): 36.
    [30] GROVES PM, LINDER JC, YOUNG SJ. 5-hydroxydopamine-labeled dopaminergic axns: three-dimensional reconstructions of axons, synapses and postsynaptic targets in rat neostriatum[J]. Neuroscience, 1994, 58(3): 593-604.
    [31] DONG M, YEH F, TEPP WH, DEAN CM, JOHNSON EA, JANZ R, CHAPMAN ER. SV2 is the protein receptor for botulinum neurotoxin A[J]. Science, 2006, 312(5773): 592-596.
    [32] KROKEN AR, KARALEWITZ APA, FU ZJ, KIM JJ P, BARBIERI JT. Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons[J]. The Journal of Biological Chemistry, 2011, 286(30): 26828-26837.
    [33] DONG M, LIU HS, TEPP WH, JOHNSON EA, JANZ R, CHAPMAN ER. Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons[J]. Molecular Biology of the Cell, 2008, 19(12): 5226-5237.
    [34] FU ZJ, CHEN C, BARBIERI JT, KIM JJ P, BALDWIN MR. Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F[J]. Biochemistry, 2009, 48(24): 5631-5641.
    [35] BINDRA PS, KNOWLES R, BUCKLEY KM. Conservation of the amino acid sequence of SV2, a transmembrane transporter in synaptic vesicles and endocrine cells[J]. Gene, 1993, 137(2): 299-302.
    [36] NISHIKI T, KAMATA Y, NEMOTO Y, OMORI A, ITO T, TAKAHASHI M, KOZAKI S. Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes[J]. Journal of Biological Chemistry, 1994, 269(14): 10498-10503.
    [37] NISHIKI TI, TOKUYAMA Y, KAMATA Y, NEMOTO Y, YOSHIDA A, SATO K, SEKIGUCHI M, TAKAHASHI M, KOZAKI S. The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a[J]. FEBS Letters, 1996, 378(3): 253-257.
    [38] DONG M, RICHARDS DA, GOODNOUGH MC, TEPP WH, JOHNSON EA, CHAPMAN ER. Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells[J]. The Journal of Cell Biology, 2003, 162(7): 1293-1303.
    [39] DONG M, TEPP WH, LIU HS, JOHNSON EA, CHAPMAN ER. Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons[J]. The Journal of Cell Biology, 2007, 179(7): 1511-1522.
    [40] PENG LS, BERNTSSON RPA, TEPP WH, PITKIN RM, JOHNSON EA, STENMARK P, DONG M. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins[J]. Journal of Cell Science, 2012, 125(Pt 13): 3233-3242.
    [41] MATSUNAGA H, HALDER SK, UEDA H. Involvement of SNARE protein interaction for non-classical release of DAMPs/alarmins proteins, prothymosin alpha and S100A13[J]. Cellular and Molecular Neurobiology, 2021, 41(8): 1817-1828.
    [42] MARTÍNEZ-CARRANZA M, BLASCO P, GUSTAFSSON R, DONG M, BERNTSSON RPA, WIDMALM G, STENMARK P. Synaptotagmin binding to botulinum neurotoxins[J]. Biochemistry, 2020, 59(4): 491-498.
    [43] JOHNSON EA. Clostridial toxins as therapeutic agents: benefits of nature’s most toxic proteins[J]. Annual Review of Microbiology, 1999, 53: 551-575.
    [44] MONTECUCCO C, MOLGÓ J. Botulinal neurotoxins: revival of an old killer[J]. Current Opinion in Pharmacology, 2005, 5(3): 274-279.
    [45] SEBAIHIA M, PECK MW, MINTON NP, THOMSON NR, HOLDEN MTG, MITCHELL WJ, CARTER AT, BENTLEY SD, MASON DR, CROSSMAN L, PAUL CJ, IVENS A, WELLS-BENNIK MHJ, DAVIS IJ, CERDEÑO-TÁRRAGA AM, CHURCHER C, QUAIL MA, CHILLINGWORTH T, FELTWELL T, FRASER A, et al. Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes[J]. Genome Research, 2007, 17(7): 1082-1092.
    [46] WILLEMS A, EAST AK, LAWSON PA, COLLINS MD. Sequence of the gene coding for the neurotoxin of Clostridium botulinum type A associated with infant botulism: comparison with other clostridial neurotoxins[J]. Research in Microbiology, 1993, 144(7): 547-556.
    [47] SMITH TJ, HILL KK, FOLEY BT, DETTER JC, MUNK AC, BRUCE DC, DOGGETT NA, SMITH LA, MARKS JD, XIE G, BRETTIN TS. Analysis of the neurotoxin complex genes in Clostridium botulinum A1-A4 and B1 strains: BoNT/A3, Ba4 and B1 clusters are located within plasmids[J]. PLoS One, 2007, 2(12): e1271.
    [48] CARTER AT, PAUL CJ, MASON DR, TWINE SM, ALSTON MJ, LOGAN SM, AUSTIN JW, PECK MW. Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum[J]. BMC Genomics, 2009, 10: 115.
    [49] LÚQUEZ C, RAPHAEL BH, MASLANKA SE. Neurotoxin gene clusters in Clostridium botulinum type Ab strains[J]. Applied and Environmental Microbiology, 2009, 75(19): 6094-6101.
    [50] MAZUET C, EZAN E, VOLLAND H, POPOFF MR, BECHER F. Toxin detection in patients’ sera by mass spectrometry during two outbreaks of type A botulism in France[J]. Journal of Clinical Microbiology, 2012, 50(12): 4091-4094.
    [51] KULL S, SCHULZ KM, WEISEMANN J, KIRCHNER S, SCHREIBER T, BOLLENBACH A, DABROWSKI PW, NITSCHE A, KALB SR, DORNER MB, BARR JR, RUMMEL A, DORNER BG. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype[J]. PLoS One, 2015, 10(2): e0116381.
    [52] BENOIT RM, SCHÄRER MA, WIESER MM, LI XD, FREY D, KAMMERER RA. Crystal structure of the BoNT/A2 receptor-binding domain in complex with the luminal domain of its neuronal receptor SV2C[J]. Scientific Reports, 2017, 7: 43588.
    [53] DAVIES JR, REES J, LIU SM, ACHARYA KR. High resolution crystal structures of Clostridium botulinum neurotoxin A3 and A4 binding domains[J]. Journal of Structural Biology, 2018, 202(2): 113-117.
    [54] LEKA O, WU YF, LI XD, KAMMERER RA. Crystal structure of the catalytic domain of botulinum neurotoxin subtype A3[J]. Journal of Biological Chemistry, 2021, 296: 100684.
    [55] GREGORY KS, MOJANAGA OO, LIU SM, ACHARYA KR. Crystal structures of botulinum neurotoxin subtypes A4 and A5 cell binding domains in complex with receptor ganglioside[J]. Toxins, 2022, 14(2): 129.
    [56] GREGORY KS, NEWELL AR, MOJANAGA OO, LIU SM, ACHARYA KR. Crystal structures of the Clostridium botulinum neurotoxin A6 cell binding domain alone and in complex with GD1a reveal significant conformational flexibility[J]. International Journal of Molecular Sciences, 2022, 23(17): 9620.
    [57] DAVIES JR, BRITTON A, LIU SM, ACHARYA KR. High-resolution crystal structures of the botulinum neurotoxin binding domains fro JIN RS. Structural basis for botulinum neurotoxin E recognition of synaptic vesicle protein 2[J]. Nature Communications, 2023, 14: 2338.
    [100] RAPHAEL BH, CHOUDOIR MJ, LÚQUEZ C, FERNÁNDEZ R, MASLANKA SE. Sequence diversity of genes encoding botulinum neurotoxin type F[J]. Applied and Environmental Microbiology, 2010, 76(14): 4805-4812.
    [101] SMITH TJ, XIE G, WILLIAMSON CHD, HILL KK, FERNÁNDEZ RA, SAHL JW, KEIM P, JOHNSON SL. Genomic characterization of newly completed genomes of botulinum neurotoxin-producing species from Argentina, Australia, and Africa[J]. Genome Biology and Evolution, 2020, 12(3): 229-242.
    [102] DOVER N, BARASH JR, HILL KK, DETTER JC, ARNON SS. Novel structural elements within the nonproteolytic clostridium botulinum type F toxin gene cluster[J]. Applied and Environmental Microbiology, 2011, 77(5): 1904-1906.
    [103] LAFUENTE S, NOLLA J, VALDEZATE S, TORTAJADA C, VARGAS-LEGUAS H, PARRON I, SÁEZ-NIETO JA, PORTAÑA S, CARRASCO G, MOGUEL E, SABATE S, ARGELICH R, CAYLÀ JA. Two simultaneous botulism outbreaks in Barcelona: Clostridium baratii and Clostridium botulinum[J]. Epidemiology and Infection, 2013, 141(9): 1993-1995.
    [104] GIORDANI F, FILLO S, ANSELMO A, PALOZZI AM, FORTUNATO A, GENTILE B, AZARNIA TEHRAN D, CIAMMARUCONI A, SPAGNOLO F, PITTIGLIO V, ANNIBALLI F, AURICCHIO B, de MEDICI D, LISTA F. Genomic characterization of Italian Clostridium botulinum group I strains[J]. Infection, Genetics and Evolution, 2015, 36: 62-71.
    [105] SIKORRA S, SKIBA M, DORNER MB, WEISEMANN J, WEIL M, VALDEZATE S, DAVLETOV B, RUMMEL A, DORNER BG, BINZ T. Botulinum neurotoxin F subtypes cleaving the VAMP-2 Q58-K59 peptide bond exhibit unique catalytic properties and substrate specificities[J]. Toxins, 2018, 10(8): 311.
    [106] SHI DY, LU JS, MAO YY, LIU FJ, WANG R, DU P, YU S, YU YZ, YANG ZX. Characterization of a novel tetravalent botulism antitoxin based on receptor-binding domain of BoNTs[J]. Applied Microbiology and Biotechnology, 2023, 107(10): 3205-3216.
    [107] SCHMITT J, KARALEWITZ A, BENEFIELD DA, MUSHRUSH DJ, PRUITT RN, SPILLER BW, BARBIERI JT, LACY DB. Structural analysis of botulinum neurotoxin type G receptor binding[J]. Biochemistry, 2010, 49(25): 5200-5205.
    [108] WILLJES G, MAHRHOLD S, STROTMEIER J, EICHNER T, RUMMEL A, BINZ T. Botulinum neurotoxin G binds synaptotagmin-II in a mode similar to that of serotype B: tyrosine 1186 and lysine 1191 cause its lower affinity[J]. Biochemistry, 2013, 52(22): 3930-3938.
    [109] STENMARK P, DONG M, DUPUY J, CHAPMAN ER, STEVENS RC. Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding[J]. Journal of Molecular Biology, 2010, 397(5): 1287-1297.
    [110] STERN D, WEISEMANN J, Le BLANC A, von BERG L, MAHRHOLD S, PIESKER J, LAUE M, LUPPA PB, DORNER MB, DORNER BG, RUMMEL A. A lipid-binding loop of botulinum neurotoxin serotypes B, DC and G is an essential feature to confer their exquisite potency[J]. PLoS Pathogens, 2018, 14(5): e1007048
    [111] STROTMEIER J, WILLJES G, BINZ T, RUMMEL A. Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity[J]. FEBS Letters, 2012, 586(4): 310-313.
    [112] BARASH JR, ARNON SS. A novel strain of Clostridium botulinum that produces type B and type H botulinum toxins[J]. The Journal of Infectious Diseases, 2014, 209(2): 183-191.
    [113] DOVER N, BARASH JR, HILL KK, XIE G, ARNON SS. Molecular characterization of a novel botulinum neurotoxin type H gene[J]. The Journal of Infectious Diseases, 2014, 209(2): 192-202.
    [114] YAO GR, LAM KH, PERRY K, WEISEMANN J, RUMMEL A, JIN RS. Crystal structure of the receptor-binding domain of botulinum neurotoxin type HA, also known as type FA or H[J]. Toxins, 2017, 9(3): 93.
    [115] DAVIES JR, HACKETT GS, LIU SM, ACHARYA KR. High resolution crystal structures of the receptor-binding domain of Clostridium botulinum neurotoxin serotypes A and FA[J]. PeerJ, 2018, 6: e4552.
    [116] DOVER JS, SOLISH N, GROSS TM, GALLAGHER CJ, BROWN J. Bridging the gap: sustained treatment effect of glabellar lines with twice-a-year treatment with daxibotulinumtoxin A[J]. Dermatologic Surgery, 2023, 49(9): 862-864.
    [117] GARCIA-RODRIGUEZ C, YAN SD, GEREN IN, KNOPP KA, DONG JB, SUN ZD, LOU JL, CONRAD F, WEN WH, FARR-JONES S, SMITH TJ, BROWN JL, SKERRY JC, SMITH LA, MARKS JD. A four-monoclonal antibody combination potently neutralizes multiple botulinum neurotoxin serotypes C and D[J]. Toxins, 2021, 13(9): 641.
    [118] GRIPPE T, CHEN R. Botulinum toxin in the management of parkinsonian disorders[J]. Toxicon, 2023, 232: 107209.
    [119] JIANG YH, JHANG JF, KUO HC. The clinical application of intravesical botulinum toxin A injection in patients with overactive bladder and interstitial cystitis[J]. Tzu Chi Medical Journal, 2022, 35(1): 31-37.
    [120] KARA M, RICCI V, PIRRI C, SEKIZKARDEŞ M, COCCO G, STECCO C, KAYMAK B, ÖZÇAKAR L. Sonographic guide for botulinum toxin injections for chronic migraine headache: EURO-MUSCULUS/USPRM approach[J]. Clinical Neurology and Neurosurgery, 2023, 232: 107883.
    [121] YIN LX, MASUYER G, ZHANG SC, ZHANG J, MIYASHITA SI, BURGIN D, LOVELOCK L, COKER SF, FU TM, STENMARK P, DONG M. Characterization of a membrane binding loop leads to engineering botulinum neurotoxin B with improved therapeutic efficacy[J]. PLoS Biology, 2020, 18(3): e3000618.
    [122] BURNS JR, LAMBERT GS, BALDWIN MR. Insights into the mechanisms by which clostridial neurotoxins discriminate between gangliosides[J]. Biochemistry, 2017, 56(20): 2571-2583.inding domain[J]. PLoS One, 2012, 7(8): e43845.
    [82] MARUTA T, DOLIMBEK BZ, AOKI KR, STEWARD LE, ATASSI MZ. Mapping of the synaptosome-binding regions on the heavy chain of botulinum neurotoxin A by synthetic overlapping peptides encompassing the entire chain[J]. The Protein Journal, 2004, 23(8): 539-552.
    [83] SHI J, BAO SZ, YIN J, CAI K, HOU XJ, XIAO L, TU W, WANG Q, WANG H. Dominant antigenic peptides located at the heavy chain terminal of botulinum neurotoxin B contain receptor-binding sites for synaptotagmin II[J]. Biochemical and Biophysical Research Communications, 2008, 374(2): 331-335.
    [84] SHI J, LI T, HOU XJ, CAI K, BAO SZ, LIU H, GAO X, XIAO L, TU W, WANG Q, YIN J, WANG H. Recombinant luminal domain of human synaptotagmin II in combination with gangliosides inhibits the toxicity of botulinum neurotoxins in mice[J]. Microbes and Infection, 2010, 12(4): 319-323.
    [85] WANG H, LI T, SHI J, CAI K, HOU XJ, WANG Q, XIAO L, TU W, LIU H, GAO X. A new neutralizing antibody against botulinum neurotoxin B recognizes the protein receptor binding sites for synaptotagmins II[J]. Microbes and Infection, 2010, 12(12/13): 1012-1018.
    [86] MIYASHITA SI, KARATSU S, FUJIISHI M, HUANG IH, NAGASHIMA Y, MOROBISHI T, HOSOYA K, HATA T, DONG M, SAGANE Y. Characterization of serotype CD mosaic botulinum neurotoxin in comparison with serotype C and A[J]. Toxins, 2023, 15(2): 123.
    [87] LINDSTRÖM M, NEVAS M, KURKI J, SAUNA-AHO R, LATVALA-KIESILÄ A, PÖLÖNEN I, KORKEALA H. Type C botulism due to toxic feed affecting 52000 farmed foxes and minks in Finland[J]. Journal of Clinical Microbiology, 2004, 42(10): 4718-4725.
    [88] STROTMEIER J, GU SY, JUTZI S, MAHRHOLD S, ZHOU J, PICH A, EICHNER T, BIGALKE H, RUMMEL A, JIN RS, BINZ T. The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites[J]. Molecular Microbiology, 2011, 81(1): 143-156.
    [89] PENG LS, TEPP WH, JOHNSON EA, DONG M. Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors[J]. PLoS Pathogens, 2011, 7(3): e1002008.
    [90] NAKAMURA K, KOHDA T, SHIBATA Y, TSUKAMOTO K, ARIMITSU H, HAYASHI M, MUKAMOTO M, SASAKAWA N, KOZAKI S. Unique biological activity of botulinum D/C mosaic neurotoxin in murine species[J]. Infection and Immunity, 2012, 80(8): 2886-2893.
    [91] STROTMEIER J, LEE K, VÖLKER AK, MAHRHOLD S, ZONG YN, ZEISER J, ZHOU J, PICH A, BIGALKE H, BINZ T, RUMMEL A, JIN RS. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner[J]. The Biochemical Journal, 2010, 431(2): 207-216.
    [92] RAPHAEL BH, JOSEPH LA, McCROSKEY LM, LÚQUEZ C, MASLANKA SE. Detection and differentiation of Clostridium botulinum type A strains using a focused DNA microarray[J]. Molecular and Cellular Probes, 2010, 24(3): 146-153.
    [93] HALPIN JL, HILL K, JOHNSON SL, BRUCE DC, SHIREY TB, DYKES JK, LÚQUEZ C. Finished whole-genome sequences of Clostridium butyricum toxin subtype E4 and Clostridium baratii toxin subtype F7 strains[J]. Genome Announcements, 2017, 5(29): e00375-17.
    [94] WEEDMARK KA, LAMBERT DL, MABON P, HAYDEN KL, URFANO CJ, LECLAIR D, van DOMSELAAR G, AUSTIN JW, CORBETT CR. Two novel toxin variants revealed by whole-genome sequencing of 175 Clostridium botulinum type E strains[J]. Applied and Environmental Microbiology, 2014, 80(20): 6334-6345.
    [95] RAPHAEL BH, LAUTENSCHLAGER M, KALB SR, de JONG LIT, FRACE M, LÚQUEZ C, BARR JR, FERNÁNDEZ RA, MASLANKA SE. Analysis of a unique Clostridium botulinum strain from the southern hemisphere producing a novel type E botulinum neurotoxin subtype[J]. BMC Microbiology, 2012, 12: 245.
    [96] WANG X, MAEGAWA T, KARASAWA T, KOZAKI S, TSUKAMOTO K, GYOBU Y, YAMAKAWA K, OGUMA K, SAKAGUCHI Y, NAKAMURA S. Genetic analysis of type E botulinum toxin-producing Clostridium butyricum strains[J]. Applied and Environmental Microbiology, 2000, 66(11): 4992-4997.
    [97] CHEN Y, KORKEALA H, AARNIKUNNAS J, LINDSTRÖM M. Sequencing the botulinum neurotoxin gene and related genes in Clostridium botulinum type E strains reveals orfx3 and a novel type E neurotoxin subtype[J]. Journal of Bacteriology, 2007, 189(23): 8643-8650.
    [98] MAZUET C, SAUTEREAU J, LEGEAY C, BOUCHIER C, BOUVET P, POPOFF MR. An atypical outbreak of food-borne botulism due to Clostridium botulinum types B and E from ham[J]. Journal of Clinical Microbiology, 2015, 53(2): 722-726.
    [99] LIU Z, LEE PG, KREZ N, LAM KH, LIU H, PRZYKOPANSKI A, CHEN P, YAO GR, ZHANG SC, TREMBLAY JM, PERRY K, SHOEMAKER CB, RUMMEL A, DONG M,
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尹凡铭,朱晨思,李涛,王慧. 不同血清型肉毒毒素受体结合域研究进展[J]. 微生物学报, 2024, 64(7): 2172-2193

复制
分享
文章指标
  • 点击次数:620
  • 下载次数: 796
  • HTML阅读次数: 987
  • 引用次数: 0
历史
  • 收稿日期:2023-09-25
  • 最后修改日期:2024-03-13
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码