细菌纤维素合酶的基本特性及作用机理
作者:
基金项目:

江苏省自然科学基金(BK20210610);中国博士后科学基金(2019M661857);江苏省博士后科研资助计划(2019K073)


Basic characteristics and catalysis mechanism of bacterial cellulose synthase
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [71]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌纤维素是一种天然的生物质高分子聚合物。相较于植物纤维素,其具有更高的纯度和优异的力学性能。有望作为一种绿色的新型高分子材料被广泛应用。细菌纤维素合酶作为合成细菌纤维素的关键酶,其主导细菌纤维素的合成过程。因此,对其合成机理的探索有助于实现细菌纤维素大量生产和广泛应用。本文从细菌纤维素合酶的基本特性出发,综述了菌种筛选、提升产量和合酶的细胞定位等内容;围绕纤维素合酶的作用机理阐述了体外合成方法的影响因素,以及利用该方法探究各亚基相关作用的现状。以此探究细菌纤维素合酶的合成机制,并提出了当前研究中存在的问题。同时,展望了该领域未来的研究方向,以期通过对合成机理的探讨为细菌纤维素的大规模应用提供理论基础。

    Abstract:

    Bacterial cellulose, a natural biopolymer with higher purity and better mechanical properties than plant cellulose, is expected to be widely used as a new green polymer material. A variety of bacteria have now been proven to have the ability to produce cellulose, in which bacterial cellulose synthase plays a crucial role. Therefore, understanding the catalysis mechanism of bacterial cellulose synthase is a key to the mass production and broad utilization of bacterial cellulose. This paper reviews the basic properties of bacterial cellulose synthase, including the screening of strains, the enhancement of yield, and the cellular localization of the synthase, aiming to promote the research on the catalysis mechanism of cellulose synthase. Further, based on the mechanism of cellulose synthase, this paper detail the influencing factors of in vitro synthesis and review the research progress in the roles of each subunit of this synthesis method. We explore the catalysis mechanism of bacterial cellulose synthase, point out the problems in the current research, and envision the future research directions in this field, with a view to providing a theoretical basis for the large-scale application of bacterial cellulose by deciphering the synthesis mechanism.

    参考文献
    [1] 刘振东, 赵淑举, 蒋苏, 张古玥. 植物纤维素合酶复合体组装与运输研究进展[J]. 植物生理学报, 2020, 56(9): 1757-1764. LIU ZD, ZHAO SJ, JIANG S, ZHANG GY. Assembly and trafficking of the cellulose synthase complex in plants[J]. Plant Physiology Journal, 2020, 56(9): 1757-1764(in Chinese).
    [2] ZAINAL SH, MOHD NH, SUHAILI N, ANUAR FH, LAZIM AM, OTHAMAN R. Preparation of cellulose-based hydrogel: a review[J]. Journal of Materials Research and Technology, 2021, 10: 935-952.
    [3] 朱晓东, 杜昀怡, 原续波, 赵瑾, 侯信. 细菌纤维素的最新研究进展[J]. 高分子通报, 2022(5): 17-26. ZHU XD, DU YY, YUAN XB, ZHAO J, HOU X. Recent progress on bacterial cellulose[J]. Polymer Bulletin, 2022(5): 17-26(in Chinese).
    [4] 李国辉. 细菌纤维素纤维复合材料的制备及其应用研究[D]. 无锡: 江南大学博士学位论文, 2017. LI GH. Preparation of bacterial cellulose fiber composites and their applications[D]. Wuxi: Doctoral Dissertation of Jiangnan University, 2017.
    [5] MARTIRANI‐VONABERCRON SM, PACHECO‐ SÁNCHEZ D. Bacterial cellulose: a highly versatile nanomaterial[J]. Microbial Biotechnology, 2023, 16(6): 1174-1178.
    [6] SKVORTSOVA ZN, GROMOVYKH TI, GRACHEV VS, TRASKIN VY. Physicochemical mechanics of bacterial cellulose[J]. Colloid Journal, 2019, 81(4): 366-376.
    [7] 洪帆, 宋洁, 白洁, 杜冰, 郑环达, 郑来久. 细菌纤维素的功能化改性研究进展[J]. 精细化工, 2021, 38(12): 2377-2384. HONG F, SONG J, BAI J, DU B, ZHENG HD, ZHENG LJ. Research progress on functional modification of bacterial cellulose[J]. Fine Chemicals, 2021, 38(12): 2377-2384(in Chinese).
    [8] 李昭锋, 曹潇, 朱杰, 陈思谦, 李琳. 细菌纤维素在植物细胞壁结构与功能研究中的应用及进展[J]. 食品科学, 2020, 41(19): 263-271. LI ZF, CAO X, ZHU J, CHEN SQ, LI L. Advances in bacterial cellulose in the study of the structure and function of plant cell wall[J]. Food Science, 2020, 41(19): 263-271(in Chinese).
    [9] CAÑAS-GUTIÉRREZ A, OSORIO M, MOLINA-RAMÍREZ C, ARBOLEDA-TORO D, CASTRO-HERAZO C. Bacterial cellulose: a biomaterial with high potential in dental and oral applications[J]. Cellulose, 2020, 27(17): 9737-9754.
    [10] HORUE M, SILVA JM, BERTI IR, BRANDÃO LR, BARUD HDS, CASTRO GR. Bacterial cellulose-based materials as dressings for wound healing[J]. Pharmaceutics, 2023, 15(2): 424.
    [11] RATHINAMOORTHY R. Recent trends in the development of smart bacterial cellulose wound dressings[J]. Indian Journal of Fibre & Textile Research, 2022, 47(1): 30-44.
    [12] WASIM M, MUSHTAQ M, KHAN SU, FAROOQ A, NAEEM MA, KHAN MR, SALAM A, WEI QF. Development of bacterial cellulose nanocomposites: an overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications[J]. Journal of Industrial Textiles, 2022, 51(2): 1886S-1915S.
    [13] AKHTAR S, SHAHID AA, SHAKOOR S, AHMED M, IFTIKHAR S, USMAAN M, SADAQAT S, LATIF A, IQBAL A, RAO AQ. Tissue specific expression of bacterial cellulose synthase (Bcs) genes improves cotton fiber length and strength[J]. Plant Science: an International Journal of Experimental Plant Biology, 2023, 328: 111576.
    [14] 杨依维, 刘玉飞, 何敏. 细菌纤维素的制备及在食品中的应用进展[J]. 纤维素科学与技术, 2022, 30(3): 45-51. YANG YW, LIU YF, HE M. Progress on the preparation of bacterial cellulose and its application in food[J]. Journal of Cellulose Science and Technology, 2022, 30(3): 45-51(in Chinese).
    [15] QIU KY, NETRAVALI AN. A review of fabrication and applications of bacterial cellulose based nanocomposites[J]. Polymer Reviews, 2014, 54(4): 598-626.
    [16] SALIHU R, FOONG CY, ABD RAZAK SI, KADIR MRA, YUSOF AHM, MAT NAYAN GH. Overview of inexpensive production routes of bacterial cellulose and its applications in biomedical engineering[J]. Cellulose Chemistry and Technology, 2019, 53(1/2): 1-13.
    [17] PEDERSEN GB, BLASCHEK L, FRANDSEN KE, NOACK LC, PERSSON S. Cellulose synthesis in land plants[J]. Molecular plant, 2023, 16(1): 206-231.
    [18] 赵鑫, 熊健力, 任叶琳, 杨家鑫, 李伟, 韩雪容. 细菌纤维素合成与鉴定研究综述[J]. 化工进展, 2020, 39(S2): 262-268. ZHAO X, XIONG JL, REN YL, YANG JX, LI W, HAN XR. Review on synthesis and identification of bacterial cellulose[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 262-268(in Chinese).
    [19] 杨礼富. 细菌纤维素研究新进展[J]. 微生物学通报, 2003, 30(4): 95-98. YANG LF. New progress in bacterial cellulose research[J]. Microbiology China, 2003, 30(4): 95-98(in Chinese).
    [20] BROWN AJ. XLIII. On an acetic ferment which forms cellulose[J]. Journal of the Chemical Society, Transactions, 1886, 49: 432-439.
    [21] BROWN RM Jr. The biosynthesis of cellulose[J]. Food Hydrocolloids, 1987, 1(5/6): 345-351.
    [22] ANANDHARAJ M, LIN YJ, RANI RP, NADENDLA EK, HO MC, HUANG CC, CHENG JF, CHANG JJ, LI WH. Constructing a yeast to express the largest cellulosome complex on the cell surface[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(5): 2385-2394.
    [23] ITOH T, KIMURA S. Immunogold labeling of terminal cellulose-synthesizing complexes[J]. Journal of Plant Research, 2001, 114(4): 483-489.
    [24] KIMURA S, CHEN HP, SAXENA IM, BROWN RM Jr, ITOH T. Localization of c-di-GMP-binding protein with the linear terminal complexes of Acetobacter xylinum[J]. Journal of Bacteriology, 2001, 183(19): 5668-5674.
    [25] 王珊珊, 韩永和, 林志蓉, 李敏. 细菌纤维素的生物合成机理、理化性质及应用研究进展[J]. 福建师范大学学报(自然科学版), 2021, 37(3): 1-9. WANG SS, HAN YH, LIN ZR, LI M. Research progress on biosynthesis mechanisms and physicochemical properties of bacterial cellulose and its application[J]. Journal of Fujian Normal University (Natural Science Edition), 2021, 37(3): 1-9(in Chinese).
    [26] LEI L, LI SD, GU Y. Cellulose synthase complexes: composition and regulation[J]. Frontiers in Plant Science, 2012, 3: 22711.
    [27] MAYER R, ROSS P, WEINHOUSE H, AMIKAM D, VOLMAN G, OHANA P, CALHOON RD, WONG HC, EMERICK AW, BENZIMAN M. Polypeptide composition of bacterial cyclic diguanylic acid-dependent cellulose synthase and the occurrence of immunologically crossreacting proteins in higher plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1991, 88(12): 5472-5476.
    [28] 黄青云, 张党权, 谷振军, 田华. 纤维素合成酶及其在基因工程中的应用[J]. 经济林研究, 2009, 27(2): 131-136. HUANG QY, ZHANG DQ, GU ZJ, TIAN H. Cellulose synthase and its application in genetic engineering[J]. Nonwood Forest Research, 2009, 27(2): 131-136(in Chinese).
    [29] MORGAN JLW, McNAMARA JT, ZIMMER J. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP[J]. Nature Structural & Molecular Biology, 2014, 21(5): 489-496.
    [30] LIU M, LIU LP, JIA SR, LI SQ, ZOU Y, ZHONG C. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation[J]. Scientific Reports, 2018, 8(1): 6266.
    [31] 李婷婷, 赵鑫, 任叶琳, 任佳楠, 韩雪容. 细菌纤维素合成菌的筛选、鉴定及其产物结构和性质表征[J]. 中国酿造, 2021, 40(2): 35-39. LI TT, ZHAO X, REN YL, REN JN, HAN XR. Screening and identification of cellulose-synthesis bacterium and its product structure and property characterization[J]. China Brewing, 2021, 40(2): 35-39(in Chinese).
    [32] AUGIMERI RV, VARLEY AJ, STRAP JL. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing proteobacteria[J]. Frontiers in Microbiology, 2015, 6: 169282.
    [33] LI GH, WANG L, DENG Y, WEI QF. Research progress of the biosynthetic strains and pathways of bacterial cellulose[J]. Journal of Industrial Microbiology and Biotechnology, 2022, 49(1): kuab071.
    [34] YAMADA Y, HOSHINO K, ISHIKAWA, T. The phylogeny of acetic acid bacteria based on the partial sequences of 16S ribosomal RNA: the elevation of the subgenus Gluconoacetobacter to the generic level[J]. Bioscience, Biotechnology, and Biochemistry, 1997, 61(8): 1244-1251.
    [35] YAMADA Y, YUKPHAN P, VU HTL, MURAMATSU Y, OCHAIKUL D, TANASUPAWAT S, NAKAGAWA, Y. List of new names and new combinations previously effectively, but not validly, published[J]. International Journal of Systematic and Evolutionary Microbiology, 2013; 63(1): 1-5.
    [36] AYDıN YA, AKSOY ND. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A[J]. Applied Microbiology and Biotechnology, 2014, 98(3): 1065-1075.
    [37] NIE WX, ZHENG X, FENG W, LIU Y, LI YD, LIANG XL. Characterization of bacterial cellulose produced by Acetobacter pasteurianus MGC-N8819 utilizing lotus rhizome[J]. LWT, 2022, 165: 113763.
    [38] YANTI NA, AHMAD SW, MUHIDDIN NH, AHMAD NUR RAMADHAN LO, SURIANA, WALHIDAYAH T. Characterization of bacterial cellulose produced by Acetobacter xylinum strain LKN6 using Sago liquid waste as nutrient source[J]. Pakistan Journal of Biological Sciences, 2021, 24(3): 335-344.
    [39] de WULF P, JORIS K, VANDAMME EJ. Improved cellulose formation by an Acetobacter xylinum mutant limited in (keto)gluconate synthesis[J]. Journal of Chemical Technology & Biotechnology, 1996, 67(4): 376-380.
    [40] BAE SO, SUGANO Y, OHI K, SHODA M. Features of bacterial cellulose synthesis in a mutant generated by disruption of the diguanylate cyclase 1 gene of Acetobacter xylinum BPR 2001[J]. Applied Microbiology and Biotechnology, 2004, 65(3): 315-322.
    [41] WU RQ, LI ZX, YANG JP, XING XH, SHAO DY, XING KL. Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain[J]. Cellulose, 2010, 17(2): 399-405.
    [42] LU TF, GAO HL, LIAO BW, WU JJ, ZHANG W, HUANG J, LIU MY, HUANG J, CHANG ZY, JIN MF, YI ZF, JIANG DM. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis[J]. Carbohydrate Polymers, 2020, 232: 115788.
    [43] BROWN RM Jr, WILLISON JH, RICHARDSON CL. Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process[J]. Proceedings of the National Academy of Sciences of the United States of America, 1976, 73(12): 4565-4569.
    [44] COOPER D, MANLEY RS. Cellulose synthesis by Acetobacter xylinum. I. Low molecular weight compounds present in the region of synthesis[J]. Biochimica et Biophysica Acta, 1975, 381(1): 78-96.
    [45] ZAAR K. Visualization of pores 228-231.
    [73] CHEN HP, BROWN RM. Immunochemical studies of the cellulose synthase complex in Acetobacter xylinum[J]. Cellulose, 1996, 3(1): 63-75.
    [74] HILTON MA, MANNING HW, GÓRNIAK I, BRADY SK, JOHNSON MM, ZIMMER J, LANG MJ. Single-molecule investigations of single-chain cellulose biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(40): e2122770119.
    [75] SAXENA IM, KUDLICKA K, OKUDA K, JR BROWN RM. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization[J]. Journal of Bacteriology, 1994, 176(18): 5735-5752.
    [76] SAJADI E, FATEMI SSA, BABAEIPOUR V, DELDAR AA, YAKHCHALI B, ANVAR MS. Increased cellulose production by heterologous expression of bcsA and bcsB genes from Gluconacetobacter xylinus in E. coli Nissle 1917[J]. Bioprocess and Biosystems Engineering, 2019, 42(12): 2023-2034.
    [77] SU HY, LEE TM, HUANG YL, CHOU SH, WANG JB, LIN LF, CHOW SH. Increased cellulose production by heterologous expression of cellulose synthase genes in a filamentous heterocystous cyanobacterium with a modification in photosynthesis performance and growth ability[J]. Botanical Studies, 2011, 52(3): 265-275.
    [78] NOJIMA S, FUJISHIMA A, KATO K, OHUCHI K, SHIMIZU N, YONEZAWA K, TAJIMA K, YAO M. Crystal structure of the flexible tandem repeat domain of bacterial cellulose synthesis subunit C[J]. Scientific Reports, 2017, 7: 13018.
    [79] SAJADI E, BABAIPOUR V, DELDAR AA, YAKHCHALI B, FATEMI SSA. Enhancement of crystallinity of cellulose produced by Escherichia coli through heterologous expression of bcsD gene from Gluconacetobacter xylinus[J]. Biotechnology Letters, 2017, 39(9): 1395-1401.
    [80] KONDO T, NAKAMURA Y, NOJIMA S, YAO M, IMAI T. The BcsD subunit of type I bacterial cellulose synthase interacts dynamically with the BcsAB catalytic core complex[J]. FEBS Letters, 2022, 596(23): 3069-3086.
    [81] SUN SJ, HORIKAWA Y, WADA M, SUGIYAMA J, IMAI T. Site-directed mutagenesis of bacterial cellulose synthase highlights sulfur-arene interaction as key to catalysis[J]. Carbohydrate Research, 2016, 434: 99-106.
    [82] UMEDA Y, HIRANO A, ISHIBASHI M, AKIYAMA H, ONIZUKA T, IKEUCHI M, INOUE Y. Cloning of cellulose synthase genes from Acetobacter xylinum JCM 7664: implication of a novel set of cellulose synthase genes[J]. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 1999, 6(2): 109-115.
    [83] ALZARI PM, SOUCHON H, DOMINGUEZ R. The crystal structure of endoglucanase CelA, a family 8 glycosyl hydrolase from Clostridium thermocellum[J]. Structure, 1996, 4(3): 265-275.
    [84] ANDERSON AC, BURNETT AJN, HISCOCK L, MALY KE, WEADGE JT. The Escherichia coli cellulose synthase subunit G (BcsG) is a Zn2+-dependent phosphoethanolamine transferase[J]. The Journal of Biological Chemistry, 2020, 295(18): 6225-6235.
    [85] MAZUR O, ZIMMER J. Apo- and cellopentaose-bound structures of the bacterial cellulose synthase subunit BcsZ[J]. The Journal of Biological Chemistry, 2011, 286(20): 17601-17606.
    [86] FANG X, AHMAD I, BLANKA A, SCHOTTKOWSKI M, CIMDINS A, GALPERIN MY, RÖMLING U, GOMELSKY M. GIL, a new c-di-GMP-binding protein domain involved in regulation of cellulose synthesis in enterobacteria[J]. Molecular Microbiology, 2014, 93(3): 439-452.
    [87] ABIDI W, TORRES-SÁNCHEZ L, SIROY A, KRASTEVA PV. Weaving of bacterial cellulose by the Bcs secretion systems[J]. FEMS Microbiology Reviews, 2022, 46(2): fuab051. 76.0 to 81.5 minutes[J]. Nucleic Acids Research, 1994, 22(13): 2576-2586.
    [62] OMADJELA O, NARAHARI A, STRUMILLO J, MÉLIDA H, MAZUR O, BULONE V, ZIMMER J. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(44): 17856-17861.
    [63] IMAI T, SUN SJ, HORIKAWA Y, WADA M, SUGIYAMA J. Functional reconstitution of cellulose synthase in Escherichia coli[J]. Biomacromolecules, 2014, 15(11): 4206-4213.
    [64] DU J, VEPACHEDU V, CHO SH, KUMAR M, NIXON BT. Structure of the cellulose synthase complex of Gluconacetobacter hansenii at 23.4Å resolution[J]. PLoS One, 2016, 11(5): e0155886.
    [65] TAJIMA H, PENTTILÄ PA, IMAI T, YAMAMOTO K, YUGUCHI Y. Observation of in vitro cellulose synthesis by bacterial cellulose synthase with time-resolved small angle X-ray scattering[J]. International Journal of Biological Macromolecules, 2019, 130: 765-777.
    [66] WANG J, TAVAKOLI J, TANG YH. Bacterial cellulose production, properties and applications with different culture methods: a review[J]. Carbohydrate Polymers, 2019, 219: 63-76.
    [67] HASHIMOTO A, SHIMONO K, HORIKAWA Y, ICHIKAWA T, WADA M, IMAI T, SUGIYAMA J. Extraction of cellulose-synthesizing activity of Gluconacetobacter xylinus by alkylmaltoside[J]. Carbohydrate Research, 2011, 346(17): 2760-2768.
    [68] LI ZF, CHEN SQ, CAO X, LI L, ZHU J, YU HP. Effect of pH buffer and carbon metabolism on the yield and mechanical properties of bacterial cellulose produced by Komagataeibacter hansenii ATCC 53582[J]. Journal of Microbiology and Biotechnology, 2021, 31(3): 429-438.
    [69] KOUDA T, NARITOMI T, YANO H, YOSHINAGA F. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture[J]. Journal of Fermentation and Bioengineering, 1997, 84(2): 124-127.
    [70] ZHOU LL, SUN DP, HU LY, LI YW, YANG JZ. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum[J]. Journal of Industrial Microbiology & Biotechnology, 2007, 34(7): 483-489.
    [71] SON HJ, KIM HG, KIM KK, KIM HS, KIM YG, LEE SJ. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions[J]. Bioresource Technology, 2003, 86(3): 215-219.
    [72] TODA K, ASAKURA T, FUKAYA M, ENTANI E, KAWAMURA Y. Cellulose production by acetic acid-resistant Acetobacter xylinum[J]. Journal of Fermentation and Bioengineering, 1997, 84(3):
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张凯仁,李任杰,柯晶滢,李骏卓,孙世静. 细菌纤维素合酶的基本特性及作用机理[J]. 微生物学报, 2024, 64(7): 2194-2208

复制
分享
文章指标
  • 点击次数:551
  • 下载次数: 943
  • HTML阅读次数: 1175
  • 引用次数: 0
历史
  • 收稿日期:2023-11-02
  • 最后修改日期:2024-04-07
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码