抗菌肽的结构分析、抗菌机制及改造应用的研究进展
作者:
基金项目:

山东省自然科学基金(ZR2022MH152)


Research progress in structures, mechanisms, and modification of antimicrobial peptides
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [95]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌感染已成为威胁人类健康的重要公共卫生问题之一,而抗生素的滥用又加快了细菌耐药性的进程。抗菌肽因其广谱抗菌活性、快速杀菌作用、低毒性和不易产生耐药性等特点受到了广泛关注。然而,抗菌肽的天然结构也预示了其应用存在一些限制,如易降解、不稳定、低渗透和高成本等。如何改良抗菌肽仍是需要解决的难题。本文从抗菌肽的来源和结构特征出发,分析了与抗菌相关的空间结构及其所对应的抗菌机制,总结了现有抗菌肽的改良策略,为寻求新型改良方案奠定基础。希望为今后抗菌肽的改造与临床应用提供新的思路和方向。

    Abstract:

    Bacterial infection has become one of the major problems threatening public health, and the abuse of antibiotics has accelerated the development of bacterial resistance. Antimicrobial peptides have attracted extensive attention due to their broad-spectrum antibacterial activity, rapid bactericidal effect, low toxicity, and low risk of drug resistance. However, the natural structures of antimicrobial peptides indicate some limitations, such as easy degradation, instability, low permeability, and high costs, in their application. How to improve antimicrobial peptides is still a problem to be solved. From the sources and structural characteristics of antimicrobial peptides, we analyzed the spatial structures related to the antibacterial activity and corresponding antibacterial mechanisms. In addition, we summarize the existing improvement strategies of antimicrobial peptides to lay a foundation for seeking new improvement schemes. This review provides new ideas and directions for the modification and clinical application of antimicrobial peptides in the future.

    参考文献
    [1] LEVY SB, MARSHALL B. Antibacterial resistance worldwide: causes, challenges and responses[J]. Nature Medicine, 2004, 10: S122-S129.
    [2] SAVINI F, LOFFREDO MR, TROIANO C, BOBONE S, MALANOVIC N, EICHMANN TO, CAPRIO L, CANALE VC, PARK Y, MANGONI ML, STELLA L. Binding of an antimicrobial peptide to bacterial cells: interaction with different species, strains and cellular components[J]. Biochimica et Biophysica Acta Biomembranes, 2020, 1862(8): 183291.
    [3] LUO Y, SONG YZ. Mechanism of antimicrobial peptides: antimicrobial, anti-inflammatory and antibiofilm activities[J]. International Journal of Molecular Sciences, 2021, 22(21): 11401.
    [4] ZHAO F, LAN XQ, DU Y, CHEN PY, ZHAO J, ZHAO F, LEE WH, ZHANG Y. King cobra peptide OH-CATH30 as a potential candidate drug through clinic drug-resistant isolates[J]. Zoological Research, 2018, 39(2): 87-96.
    [5] JENSSEN H, HAMILL P, HANCOCK REW. Peptide antimicrobial agents[J]. Clinical Microbiology Reviews, 2006, 19(3): 491-511.
    [6] GAO YD, FANG HT, FANG L, LIU DW, LIU JS, SU MH, FANG Z, REN WZ, JIAO HP. The modification and design of antimicrobial peptide[J]. Current Pharmaceutical Design, 2018, 24(8): 904-910.
    [7] GAO XH, DING JQ, LIAO CB, XU JL, LIU XX, LU WY. Defensins: the natural peptide antibiotic[J]. Advanced Drug Delivery Reviews, 2021, 179: 114008.
    [8] HANCOCK REW, BROWN KL, MOOKHERJEE N. Host defence peptides from invertebrates: emerging antimicrobial strategies[J]. Immunobiology, 2006, 211(4): 315-322.
    [9] RODRÍGUEZ-RUBIO L, MARTÍNEZ B, DONOVAN DM, RODRÍGUEZ A, GARCÍA P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics[J]. Critical Reviews in Microbiology, 2013, 39(4): 427-434.
    [10] FATHIZADEH H, SAFFARI M, ESMAEILI D, MONIRI R, SALIMIAN M. Evaluation of antibacterial activity of enterocin A-colicin E1 fusion peptide[J]. Iranian Journal of Basic Medical Sciences, 2020, 23(11): 1471-1479.
    [11] SCHNEIDER T, KRUSE T, WIMMER R, WIEDEMANN I, SASS V, PAG U, JANSEN A, NIELSEN AK, MYGIND PH, RAVENTÓS DS, NEVE S, RAVN B, BONVIN AMJJ, de MARIA L, ANDERSEN AS, GAMMELGAARD LK, SAHL HG, KRISTENSEN HH. Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II[J]. Science, 2010, 328(5982): 1168-1172.
    [12] BIN HAFEEZ A, JIANG XK, BERGEN PJ, ZHU Y. Antimicrobial peptides: an update on classifications and databases[J]. International Journal of Molecular Sciences, 2021, 22(21): 11691.
    [13] TAM JP, WANG SJ, WONG KH, TAN WL. Antimicrobial peptides from plants[J]. Pharmaceuticals, 2015, 8(4): 711-757.
    [14] DINI I, de BIASI MG, MANCUSI A. An overview of the potentialities of antimicrobial peptides derived from natural sources[J]. Antibiotics, 2022, 11(11): 1483.
    [15] van HARTEN RM, van WOUDENBERGH E, van DIJK A, HAAGSMAN HP. Cathelicidins: immunomodulatory antimicrobials[J]. Vaccines, 2018, 6(3): 63.
    [16] ZHANG Y, ZHAO H, YU GY, LIU XD, SHEN JH, LEE WH, ZHANG Y. Structure-function relationship of king cobra cathelicidin[J]. Peptides, 2010, 31(8): 1488-1493.
    [17] WANG YP, HONG J, LIU XH, YANG HL, LIU R, WU J, WANG AL, LIN DH, LAI R. Snake cathelicidin from Bungarus fasciatus is a potent peptide antibiotics[J]. PLoS One, 2008, 3(9): e3217.
    [18] SHINNAR AE, BUTLER KL, PARK HJ. Cathelicidin family of antimicrobial peptides: proteolytic processing and protease resistance[J]. Bioorganic Chemistry, 2003, 31(6): 425-436.
    [19] DESLOUCHES B, PHADKE SM, LAZAREVIC V, CASCIO M, ISLAM K, MONTELARO RC, MIETZNER TA. De novo generation of cationic antimicrobial peptides: influence of length and tryptophan substitution on antimicrobial activity[J]. Antimicrobial Agents and Chemotherapy, 2005, 49(1): 316-322.
    [20] FRY DE. Antimicrobial peptides[J]. Surgical Infections, 2018, 19(8): 804-811.
    [21] LEIGH T, FERNANDEZ-TRILLO P. Helical polymers for biological and medical applications[J]. Nature Reviews Chemistry, 2020, 4: 291-310.
    [22] LEI J, SUN LC, HUANG SY, ZHU CH, LI P, HE J, MACKEY V, COY DH, HE QY. The antimicrobial peptides and their potential clinical applications[J]. American Journal of Translational Research, 2019, 11(7): 3919-3931.
    [23] PANTELEEV PV, BOLOSOV IA, BALANDIN SV, OVCHINNIKOVA TV. Structure and biological functions of β-hairpin antimicrobial peptides[J]. Acta Naturae, 2015, 7(1): 37-47.
    [24] ZOHRAB F, ASKARIAN S, JALILI A, KAZEMI OSKUEE R. Biological properties, current applications and potential therapeautic applications of brevinin peptide superfamily[J]. International Journal of Peptide Research and Therapeutics, 2019, 25(1): 39-48.
    [25] SEEFELDT AC, NGUYEN F, ANTUNES S, PÉRÉBASKINE N, GRAF M, ARENZ S, INAMPUDI KK, DOUAT C, GUICHARD G, WILSON DN, INNIS CA. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex[J]. Nature Structural & Molecular Biology, 2015, 22: 470-475.
    [26] SUN TY, ZHAN B, ZHANG WF, QIN D, XIA GX, ZHANG HJ, PENG MY, LI SG, ZHANG Y, GAO YY, LEE WH. Carboxymethyl chitosan nanoparticles loaded with bioactive peptide OH-CATH30 benefit nonscar wound healing[J]. International Journal of Nanomedicine, 2018, 13: 5771-5786.
    [27] LI SG, LEE WH, ZHANG Y. Efficacy of OH-CATH30 and its analogs against drug-resistant bacteria in vitro and in mouse models[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(6): 3309-3317.
    [28] HANCOCK REW, NIJNIK A, PHILPOTT DJ. Modulating immunity as a therapy for bacterial infections[J]. Nature Reviews Microbiology, 2012, 10: 243-254.
    [29] WENZEL M, CHIRIAC AI, OTTO A, ZWEYTICK D, MAY C, SCHUMACHER C, GUST R, ALBADA HB, PENKOVA M, KRÄMER U, ERDMANN R, METZLER-NOLTE N, STRAUS SK, BREMER E, BECHER D, BRÖTZ-OESTERHELT H, SAHL HG, BANDOW JE. Small cationic antimicrobial peptides delocalize peripheral membrane proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(14): E1409-E1418.
    [30] OEEMIG JS, LYNGGAARD C, KNUDSEN DH, HANSEN FT, NØRGAARD KD, SCHNEIDER T, VAD BS, SANDVANG DH, NIELSEN LA, NEVE S, KRISTENSEN HH, SAHL HG, OTZEN DE, WIMMER R. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action[J]. The Journal of Biological Chemistry, 2012, 287(50): 42361-42372.
    [31] ESSIG A, HOFMANN D, MÜNCH D, GAYATHRI S, KÜNZLER M, KALLIO PT, SAHL HG, WIDER G, SCHNEIDER T, AEBI M. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis[J]. The Journal of Biological Chemistry, 2014, 289(50): 34953-34964.
    [32] MATHEW MK, BALARAM P. Alamethicin and related membrane channel forming polypeptides[J]. Molecular and Cellular Biochemistry, 1983, 50(1): 47-64.
    [33] BOLINTINEANU DS, VIVCHARUK V, KAZNESSIS YN. Multiscale models of the antimicrobial peptide protegrin-1 on Gram-negative bacteria membranes[J]. International Journal of Molecular Sciences, 2012, 13(9): 11000-11011.
    [34] MEMARIANI H, MEMARIANI M, MORAVVEJ H, SHAHIDI-DADRAS M. Melittin: a venom-derived peptide with promising anti-viral properties[J]. European Journal of Clinical Microbiology & Infectious Diseases, 2020, 39(1): 5-17.
    [35] SAIDUMOHAMED BE, BABURAJ AP, JOHNY TK, SHEELA UB, SREERANGANATHAN M, BHAT SG. A magainin-2 like bacteriocin BpSl14 with anticancer action from fish gut Bacillus safensis SDG14[J]. Analytical Biochemistry, 2021, 627: 114261.
    [36] SHAI Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides[J]. Biochimica et Biophysica Acta, 1999, 1462(1/2): 55-70.
    [37] SINHA S, ZHENG LZ, MU YG, NG WJ, BHATTACHARJYA S. Structure and interactions of a host defense antimicrobial peptide thanatin in lipopolysaccharide micelles reveal mechanism of bacterial cell agglutination[J]. Scientific Reports, 2017, 7(1): 17795.
    [38] BRAFFMAN NR, PISCOTTA FJ, HAUVER J, CAMPBELL EA, LINK AJ, DARST SA. Structural mechanism of transcription inhibition by lasso peptides microcin J25 and capistruin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(4): 1273-1278.
    [39] CHILEVERU HR, LIM SA, CHAIRATANA P, WOMMACK AJ, CHIANG IL, NOLAN EM. Visualizing attack of Escherichia coli by the antimicrobial peptide human defensin 5[J]. Biochemistry, 2015, 54(9): 1767-1777.
    [40] MOOKHERJEE N, ANDERSON MA, HAAGSMAN HP, DAVIDSON DJ. Antimicrobial host defence peptides: functions and clinical potential[J]. Nature Reviews Drug Discovery, 2020, 19: 311-332.
    [41] TORNESELLO AL, BORRELLI A, BUONAGURO L, BUONAGURO FM, TORNESELLO ML. Antimicrobial peptides as anticancer agents: functional properties and biological activities[J]. Molecules, 2020, 25(12): 2850.
    [42] PIOTROWSKA U, SOBCZAK M, OLEDZKA E. Current state of a dual behaviour of antimicrobial peptides-therapeutic agents and promising delivery vectors[J]. Chemical Biology & Drug Design, 2017, 90(6): 1079-1093.
    [43] GANZ T. Defensins: antimicrobial peptides of innate immunity[J]. Nature Reviews Immunology, 2003, 3: 710-720.
    [44] BORRELLI A, TORNESELLO AL, TORNESELLO ML, BUONAGURO FM. Cell penetrating peptides as molecular carriers for anti-cancer agents[J]. Molecules, 2018, 23(2): 295.
    [45] CLARKE AJ. Peptidoglycan: another brick in the wall[J]. Nature Chemical Biology, 2017, 13(7): 695-696.
    [46] FU J, ZONG X, JIN ML, MIN JX, WANG FD, WANG YZ. Mechanisms and regulation of defensins in host defense[J]. Signal Transduction and Targeted Therapy, 2023, 8: 300.
    [47] CHEN N, JIANG C. Antimicrobial peptides: structure, mechanism, and modification[J]. European Journal of Medicinal Chemistry, 2023, 255: 115377.
    [48] LE CF, FANG CM, SEKARAN SD. Intracellular targeting mechanisms by antimicrobial peptides[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(4): e02340-16.
    [49] MARIA-NETO S, de ALMEIDA KC, MACEDO MLR, FRANCO OL. Understanding bacterial resistance to antimicrobial peptides: from the surface to deep inside[J]. Biochimica et Biophysica Acta, 2015, 1848(11 Pt B): 3078-3088.
    [50] LIU J, ZHANG X, ZOU PF, YAO JH, LIU LL, CAI Y, SUN TY, GAO YY, LI LL. Peptide-based nano-antibiotic transformers with antibiotic adjuvant effect for multidrug resistant bacterial pneumonia therapy[J]. Nano Today, 2022, 44: 101505.
    [51] MANTEGHI R, PALLAGI E, OLAJOS G, CSÓKA I. Pegylation and formulation strategy of anti-microbial peptide (AMP) according to the quality by design approach[J]. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 2020, 144: 105197.
    [52] SHEN TF, CHEN LL, LIU YQ, SHI SB, LIU ZX, CAI KR, LIAO CS, WANG C. Decanoic acid modification enhances the antibacterial activity of PMAP-23RI-Dec[J]. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 2021, 157: 105609.
    [53] WANG JJ, SONG J, YANG ZY, HE SQ, YANG Y, FENG XJ, DOU XJ, SHAN AS. Antimicrobial peptides with high proteolytic resistance for combating Gram-negative bacteria[J]. Journal of Medicinal Chemistry, 2019, 62(5): 2286-2304.
    [54] WEI YT, WU J, CHEN YX, FAN KW, YU XM, LI XJ, ZHAO YH, LI Y, LV GZ, SONG GD, RONG XZ, LIN C, WANG HT, CHEN XD, ZHANG PH, HAN CM, ZU HX, LIU WJ, ZHANG Y, LIU C, et al. Efficacy and safety of PL-5(peceleganan) spray for wound infections: a phase IIb randomized clinical trial[J]. Annals of Surgery, 2023, 277(1): 43-49.
    [55] DURACK E, MALLEN S, O’CONNOR PM, REA MC, ROSS RP, HILL C, HUDSON S. Protecting bactofencin A to enable its antimicrobial activity using mesoporous matrices[J]. International Journal of Pharmaceutics, 2019, 558: 9-17.
    [56] ATEFYEKTA S, ERCAN B, KARLSSON J, TAYLOR E, CHUNG S, WEBSTER TJ, ANDERSSON M. Antimicrobial performance of mesoporous titania thin films: role of pore size, hydrophobicity, and antibiotic release[J]. International Journal of Nanomedicine, 2016, 11: 977-990.
    [57] RIGO S, HÜRLIMANN D, MAROT L, MALMSTEN M, MEIER W, PALIVAN CG. Decorating nanostructured surfaces with antimicrobial peptides to efficiently fight bacteria[J]. ACS Applied Bio Materials, 2020, 3(3): 1533-1543.
    [58] AMARIEI G, KOKOL V, VIVOD V, BOLTES K, LETÓN P, ROSAL R. Biocompatible antimicrobial electrospun nanofibers functionalized with ε-poly-L-lysine[J]. International Journal of Pharmaceutics, 2018, 553(1/2): 141-148.
    [59] LIU XW, LI Z, WANG XD, CHEN YJ, WU FB, MEN K, XU T, LUO Y, YANG L. Novel antimicrobial peptide-modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus[J]. International Journal of Nanomedicine, 2016, 11: 6781-6794.
    [60] ROCHA ED, FERREIRA MRS, dos SANTOS NETO E, BARBOSA EJ, LÖBENBERG R, LOURENÇO FR, BOU-CHACRA N. Enhanced in vitro antimicrobial activity of polymyxin B-coated nanostructured lipid carrier containing dexamethasone acetate[J]. Journal of Pharmaceutical Innovation, 2021, 16(1): 125-135.
    [61] BOGE L, BROWNING KL, NORDSTRÖM R, CAMPANA M, DAMGAARD LSE, SETH CAOUS J, HELLSING M, RINGSTAD L, ANDERSSON M. Peptide-loaded cubosomes functioning as an antimicrobial unit against Escherichia coli[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21314-21322.
    [62] LOMBARDI L, SHI YJ, FALANGA A, GALDIERO E, de ALTERIIS E, FRANCI G, CHOURPA I, AZEVEDO HS, GALDIERO S. Enhancing the potency of antimicrobial peptides through molecular engineering and self-assembly[J]. Biomacromolecules, 2019, 20(3): 1362-1374.
    [63] HUANG L, ZHU ZY, WU DW, GAN WD, ZHU SS, LI WQ, TIAN JH, LI LH, ZHOU CR, LU L. Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration[J]. Carbohydrate Polymers, 2019, 225: 115110.
    [64] PAL I, BRAHMKHATRI VP, BERA S, BHATTACHARYYA D, QUIRISHI Y, BHUNIA A, ATREYA HS. Enhanced stability and activity of an antimicrobial peptide in conjugation with silver nanoparticle[J]. Journal of Colloid and Interface Science, 2016, 483: 385-393.
    [65] PETRIN THC, FADEL V, MARTINS DB, DIAS SA, CRUZ A, SERGIO LM, ARCISIO-MIRANDA M, CASTANHO MARB, DOS SANTOS CABRERA MP. Synthesis and characterization of peptide-chitosan conjugates (PepChis) with lipid bilayer affinity and antibacterial activity[J]. Biomacromolecules, 2019, 20(7): 2743-2753.
    [66] CUI Q, XU QJ, LIU L, GUAN LL, JIANG XY, INAM M, KONG LC, MA HX. Preparation, characterization and pharmacokinetic study of N-terminal PEGylated D-form antimicrobial peptide OM19r-8[J]. Journal of Pharmaceutical Sciences, 2021, 110(3): 1111-1119.
    [67] JELINKOVA P, SPLICHAL Z, JIMENEZ AMJ, HADDAD Y, MAZUMDAR A, SUR VP, MILOSAVLJEVIC V, KOPEL P, BUCHTELOVA H, GURAN R, ZITKA O, RICHTERA L, HEGEROVA D, HEGER Z, MOULICK A, ADAM V. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus[J]. Infection and Drug Resistance, 2018, 11: 1807-1817.
    [68] LEI XL, QIU L, LAN M, DU XC, ZHOU SW, CUI PF, ZHENG RH, JIANG PJ, WANG JH, XIA J. Antibacterial photodynamic peptides for staphylococcal skin infection[J]. Biomaterials Science, 2020, 8(23): 6695-6702.
    [69] ZHANG QY, TANG J, RAN R, LIU YY, ZHANG ZR, GAO HL, HE Q. Development of an anti-microbial peptide-mediated liposomal delivery system: a novel approach towards pH-responsive anti-microbial peptides[J]. Drug Delivery, 2016, 23(4): 1163-1170.
    [70] YANG ZF, ZHENG JL, CHAN CF, WONG ILK, HEATER BS, CHOW LMC, LEE MMM, CHAN MK. Targeted delivery of antimicrobial peptide by Cry protein crystal to treat intramacrophage infection[J]. Biomaterials, 2019, 217: 119286.
    [71] HÅKANSSON J, CAVANAGH JP, STENSEN W, MORTENSEN B, SVENDSEN JS, SVENSON J. In vitro and in vivo antibacterial properties of peptide AMC-109 impregnated wound dressings and gels[J]. The Journal of Antibiotics, 2021, 74: 337-345.
    [72] ZOU PF, LEE WH, GAO ZQ, QIN D, WANG YX, LIU J, SUN TY, GAO YY. Wound dressing from polyvinyl alcohol/chitosan electrospun fiber membrane loaded with OH-CATH30 nanoparticles[J]. Carbohydrate Polymers, 2020, 232: 115786.
    [73] LI GY, LAI ZH, SHAN AS. Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections[J]. Advanced Science, 2023, 10(11): e2206602.
    [74] PRANANTYO D, LIU P, ZHONG WB, KANG ET, CHAN-PARK MB. Antimicrobial peptide-reduced gold nanoclusters with charge-reversal moieties for bacterial targeting and imaging[J]. Biomacromolecules, 2019, 20(8): 2922-2933.
    [75] WANG XX, WANG YT, TANG MT, WANG XY, XUE W, ZHANG X, WANG YX, LEE WH, WANG YS, SUN TY, GAO YY, LI LL. Controlled cascade-release and high selective sterilization by core-shell nanogels for microenvironment regulation of aerobic vaginitis[J]. Advanced Healthcare Materials, 2023, 12(15): e2202432.
    [76] LI C, WANG YF, ZHANG S, ZHANG JJ, WANG F, SUN YH, HUANG LR, BIAN W. pH and ROS sequentially responsive podophyllotoxin prodrug micelles with surface charge-switchable and self-amplification drug release for combating multidrug resistance cancer[J]. Drug Delivery, 2021, 28(1): 680-691.
    [77] CHENG H, SHI Z, YUE K, HUANG XS, XU YC, GAO CH, YAO ZQ, ZHANG YS, WANG J. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities[J]. Acta Biomaterialia, 2021, 124: 219-232.
    [78] ZHAO H, HUANG J, LI Y, LV XJ, ZHOU HT, WANG HR, XU YY, WANG C, WANG J, LIU Z. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020, 258: 120286.
    [79] YAO L, LIU QY, LEI ZX, SUN TL. Development and challenges of antimicrobial peptide delivery strategies in bacterial therapy: a review[J]. International Journal of Biological Macromolecules, 2023, 253(Pt 3): 126819.
    [80] PAL S, RAMU V, TAYE N, MOGARE DG, YEWARE AM, SARKAR D, REDDY DS, CHATTOPADHYAY S, DAS A. GSH induced controlled release of levofloxacin from a purpose-built prodrug: luminescence response for probing the drug release in Escherichia coli and Staphylococcus aureus[J]. Bioconjugate Chemistry, 2016, 27(9): 2062-2070.
    [81] HU DF, DENG YY, JIA F, JIN Q, JI J. Surface charge switchable supramolecular nanocarriers for nitric oxide synergistic photodynamic eradication of biofilms[J]. ACS Nano, 2020, 14(1): 347-359.
    [82] ZHANG CY, GAO J, WANG ZJ. Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management[J]. Advanced Materials, 2018, 30(43): e1803618.
    [83] LU SZ, GUO XY, ZOU MS, ZHENG ZQ, LI YC, LI XD, LI LL, WANG H. Bacteria-instructed in situ aggregation of AuNPs with enhanced photoacoustic signal for bacterial infection bioimaging[J]. Advanced Healthcare Materials, 2020, 9(1): e1901229.
    [84] WANG X, WU J, LI PL, WANG LN, ZHOU J, ZHANG GK, LI X, HU BC, XING XD. Microenvironment-responsive magnetic nanocomposites based on silver nanoparticles/gentamicin for enhanced biofilm disruption by magnetic field[J]. ACS Applied Materials & Interfaces, 2018, 10(41): 34905-34915.
    [85] LUO XF, CHEN HF, SONG YN, QIN ZD, XU LJ, HE NY, TAN YM, DESSIE W. Advancements, challenges and future perspectives on peptide-based drugs: focus on antimicrobial peptides[J]. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 2023, 181: 106363.
    [86] GREBER KE, DAWGUL M. Antimicrobial peptides under clinical trials[J]. Current Topics in Medicinal Chemistry, 2017, 17(5): 620-628.
    [87] MASCIO CTM, MORTIN LI, HOWLAND KT, van PRAAGH ADG, ZHANG SX, ARYA A, CHUONG CL, KANG CF, LI TC, SILVERMAN JA. In vitro and in vivo characterization of CB-183,315, a novel lipopeptide antibiotic for treatment of Clostridium difficile[J]. Antimicrobial Agents and Chemotherapy, 2012, 56(10): 5023-5030.
    [88] ZHANG CY, YANG M. Antimicrobial peptides: from design to clinical application[J]. Antibiotics, 2022, 11(3): 349.
    [89] MARON B, ROLFF J, FRIEDMAN J, HAYOUKA Z. Antimicrobial peptide combination can hinder resistance evolution[J]. Microbiology Spectrum, 2022, 10(4): e0097322.
    [90] PANT A, DAS B, ARIMBASSERI GA. Host microbiome in tuberculosis: disease, treatment, and immunity perspectives[J]. Front Microbiol, 2023, 14: 1236348.
    [91] SHTREIMER KANDIYOTE N, MOHANRAJ G, MAO CW, KASHER R, ARNUSCH CJ. Synergy on surfaces: anti-biofouling interfaces using surface-attached antimicrobial peptides PGLa and magainin-2[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2018, 34(37): 11147-11155.
    [92] LÜDERS T, BIRKEMO GA, FIMLAND G, NISSEN-MEYER J, NES IF. Strong synergy between a eukaryotic antimicrobial peptide and bacteriocins from lactic acid bacteria[J]. Applied and Environmental Microbiology, 2003, 69(3): 1797-1799.
    [93] WU XZ, LI Z, LI XL, TIAN YM, FAN YZ, YU CH, ZHOU BL, LIU Y, XIANG R, YANG L. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria[J]. Drug Design, Development and Therapy, 2017, 11: 939-946.
    [94] KIM EY, RAJASEKARAN G, SHIN SY. LL-37-derived short antimicrobial peptide KR-12-a5 and its D-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity[J]. European Journal of Medicinal Chemistry, 2017, 136: 428-441.
    [95] DAI CS, WANG Y, SHARMA G, SHEN JZ, VELKOV T, XIAO XL. Polymyxins-curcumin combination antimicrobial therapy: safety implications and efficacy for infection treatment[J]. Antioxidants, 2020, 9(6): 506.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨晨远,于子川,秦迪,高媛媛. 抗菌肽的结构分析、抗菌机制及改造应用的研究进展[J]. 微生物学报, 2024, 64(7): 2242-2259

复制
分享
文章指标
  • 点击次数:697
  • 下载次数: 1425
  • HTML阅读次数: 1800
  • 引用次数: 0
历史
  • 收稿日期:2023-12-31
  • 最后修改日期:2024-04-23
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码