靶向α-酮戊二酸脱氢酶增强纳米银的抗菌作用
作者:

Targeting alpha-ketoglutarate dehydrogenase enhances antibacterial activity of silver nanoparticles
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】纳米银(silver nanoparticles, AgNPs)的生物安全性一直受业界诟病,扩大纳米银的治疗窗将为治疗人和动物多耐药性细菌感染提供有效的备选药物。本研究拟用三羧酸循环的重要成员α-酮戊二酸(alpha-ketoglutaric acid, AKG)对纳米银进行表面修饰以提高其抗菌的生物安全性。【方法】芦丁在常温下合成纳米银,用全波长分光光度计、粒度仪及透射电镜进行表征。加1 mmol/L聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)作为稳定剂(PVP-AgNPs),另加10 mmol/L AKG作为封端剂(PVP-AgNPs@AKG),比较2种纳米银的抗菌性及对人正常宫颈上皮细胞(human cervical epithelial cells, HCerEpic)的毒性作用,再分析2种纳米银对大肠杆菌(Escherichia coli) BW25113能量代谢、抗氧化应激和无氧呼吸相关基因表达等的影响。【结果】PVP-AgNPs@AKG对多株革兰阳性细菌和革兰阴性细菌的最小抑菌浓度(minimal inhibit concentration, MIC)和最低杀菌浓度(minimum bactericidal concentration, MBC)均比PVP-AgNPs低50%或50%以上,而对HCerEpic细胞的毒性无显著差异。与PVP-AgNPs相比,PVP-AgNPs@AKG在MIC浓度下对E. coli α-酮戊二酸脱氢酶活性的抑制作用增强,AKG蓄积,ATP水平显著降低,同时活性氧(reactive oxygen species, ROS)的水平显著升高,soxS表达上调,但是,厌氧呼吸相关的arcA、fnrfdnH基因表达上调的程度显著降低。【结论】AKG修饰纳米银能通过靶向α-酮戊二酸脱氢酶抑制细菌的能量代谢,使其对氧化损伤更敏感,从而获得更强的抗菌能力,是一种扩大纳米银治疗窗的有效手段。

    Abstract:

    [Objective] The biosafety of silver nanoparticles (AgNPs) has been a subject of concern due to the narrow therapeutic window. Expanding the therapeutic window could facilitate the application of AgNPs in the treatment of multi-drug resistant bacterial infections in humans and animals. This study aimed to enhance the biosafety of AgNPs by modifying their surface with alpha-ketoglutaric acid (AKG), a crucial component of the tricarboxylic acid cycle. [Methods] Silver ion was reduced to AgNPs by rutin at room temperature, and then AgNPs were stabilized with 1 mmol/L polyvinylpyrrolidone (PVP) solution to generate PVP-AgNPs. AKG (10 mmol/L) was added to generate PVP-AgNPs@AKG. The prepared AgNPs were characterized by a full-wavelength spectrophotometer, a particle size analyzer, and a transmission electron microscope. The antibacterial activities of PVP-AgNPs and PVP-AgNPs@AKG were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill curve, and post-antibiotic effect. The cytotoxicity of the prepared AgNPs to human cervical epithelial cells (HCerEpic) was examined by the MTT assay and flow cytometry. Furthermore, the effects of the prepared AgNPs on the energy metabolism, oxidative stress, and expression of genes involved in anaerobic respiration of Escherichia coli BW25113 were studied. [Results] The MIC and MBC of PVP-AgNPs@AKG against Gram-positive and Gram-negative bacteria were 50% or above 50% lower than those of PVP-AgNPs. PVP-AgNPs@AKG and PVP-AgNPs showed no significant difference in the cytotoxicity to HCerEpic cells. Compared with PVP-AgNPs, PVP-AgNPs@AKG at the MIC showed significantly enhanced inhibitory effect on the α-ketoglutarate dehydrogenase in Escherichia coli, increased accumulation of AKG, lowered ATP level, and elevated reactive oxygen species level. Moreover, PVP-AgNPs@AKG significantly up-regulated the expression of soxS and down-regulated the expression of genes involved in anaerobic respiration, such as arcA, fnr, and fdnH. [Conclusion] The findings suggested that PVP-AgNPs@AKG disrupted the energy metabolism by targeting α-ketoglutarate dehydrogenase, rending bacteria more vulnerable to oxidative damage. Modifying with AKG would be a potential method to expand the therapeutic window of AgNPs.

    参考文献
    [1] MATEO EM, JIMÉNEZ M. Silver nanoparticle-based therapy: can it be useful to combat multi-drug resistant bacteria?[J]. Antibiotics, 2022, 11(9): 1205.
    [2] APPAPALAM ST, PAUL B, AROCKIASAMY S, PANCHAMOORTHY R. Phytofabricated silver nanoparticles: discovery of antibacterial targets against diabetic foot ulcer derived resistant bacterial isolates[J]. Materials Science & Engineering C, Materials for Biological Applications, 2020, 117: 111256.
    [3] ISMAIL GA, ALLAM NG, GAAFAR RM, EL-ZANATY MM, ATEYA PS. Effect of biologically and chemically synthesized AgNPs on multi-drug resistant (MDR) dermatophyte bacterial isolates[J]. Egyptian Journal of Botany, 2022, 62(3): 687-707.
    [4] CHHIBBER S, GONDIL VS, SINGLA L, KUMAR M, CHHIBBER T, SHARMA G, SHARMA RK, WANGOO N, KATARE OP. Effective topical delivery of H-AgNPs for eradication of Klebsiella pneumoniae-induced burn wound infection[J]. AAPS PharmSciTech, 2019, 20(5): 169.
    [5] SINGH K. Antibacterial activity of synthesized silver nanoparticles from Tinospora cordifolia against multi drug resistant strains of Pseudomonas aeruginosa isolated from burn patients[J]. Journal of Nanomedicine & Nanotechnology, 2014, 5(2): 1-6.
    [6] EKICI S, BOZKAYA E, BOZKAYA O, CERCI NA, ALUC Y, EKICI H. Vitex agnus-castus L. nanoparticles: preparation, characterization and assessment of antimicrobial and anticancer activity[J]. ChemistrySelect, 2023, 8(32): e202302102.
    [7] DUNG TTN, HUNG ND, BUU NQ, van HUNG L, DUNG ND. Bactericidal activity of nanosilver against pathogenic microorganisms which cause pecular diseases of genital secretion track[J]. Vietnam Journal of Science and Technology, 2019, 57(1): 67.
    [8] LARA HH, AYALA-NÚÑEZ NV, del CARMEN IXTEPAN TURRENT L, RODRÍGUEZ PADILLA C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria[J]. World Journal of Microbiology and Biotechnology, 2010, 26(4): 615-621.
    [9] GUO JH, GAO SH, LU J, BOND PL, VERSTRAETE W, YUAN ZG. Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1[J]. ACS Applied Materials & Interfaces, 2017, 9(27): 22298-22307.
    [10] IVASK A, ELBADAWY A, KAWEETEERAWAT C, BOREN D, FISCHER H, JI ZX, CHANG CH, LIU R, TOLAYMAT T, TELESCA D, ZINK JI, COHEN Y, HOLDEN PA, GODWIN HA. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver[J]. ACS Nano, 2014, 8(1): 374-386.
    [11] FAGHIHZADEH F, ANAYA NM, ASTUDILLO- CASTRO C, OYANEDEL-CRAVER V. Kinetic, metabolic and macromolecular response of bacteria to chronic nanoparticle exposure in continuous culture[J]. Environmental Science: Nano, 2018, 5(6): 1386-1396.
    [12] ZHANG YY, LI N, WANG MZ, FENG HJ, XU C, XU F. Interference of non-lethal levels of graphene oxide in biofilm formation and adaptive response of quorum sensing in bacteria[J]. Environmental Science: Nano, 2018, 5(12): 2809-2818.
    [13] NIES DH. Efflux-mediated heavy metal resistance in prokaryotes[J]. FEMS Microbiology Reviews, 2003, 27(2/3): 313-339.
    [14] LI XZ, NIKAIDO H, WILLIAMS KE. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins[J]. Journal of Bacteriology, 1997, 179(19): 6127-6132.
    [15] PANÁČEK A, KVÍTEK L, SMÉKALOVÁ M, VEČEŘOVÁ R, KOLÁŘ M, RÖDEROVÁ M, DYČKA F, ŠEBELA M, PRUCEK R, TOMANEC O, ZBOŘIL R. Bacterial resistance to silver nanoparticles and how to overcome it[J]. Nature Nanotechnology, 2018, 13: 65-71.
    [16] GLIGA AR, SKOGLUND S, WALLINDER IO, FADEEL B, KARLSSON HL. Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release[J]. Particle and Fibre Toxicology, 2014, 11: 11.
    [17] KAWEETEERAWAT C, UBOL PN, SANGMUANG S, AUEVIRIYAVIT S, MANIRATANACHOTE R. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles[J]. Journal of Toxicology and Environmental Health Part A, 2017, 80(23/24): 1276-1289.
    [18] DU HM, LO TM, SITOMPUL J, CHANG MW. Systems-level analysis of Escherichia coli response to silver nanoparticles: the roles of anaerobic respiration in microbial resistance[J]. Biochemical and Biophysical Research Communications, 2012, 424(4): 657-662.
    [19] BAMAL D, SINGH A, CHAUDHARY G, KUMAR M, SINGH M, RANI N, MUNDLIA P, SEHRAWAT AR. Silver nanoparticles biosynthesis, characterization, antimicrobial activities, applications, cytotoxicity and safety issues: an updated review[J]. Nanomaterials, 2021, 11(8): 2086.
    [20] WATSON C, GE J, COHEN J, PYRGIOTAKIS G, ENGELWARD BP, DEMOKRITOU P. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology[J]. ACS Nano, 2014, 8(3): 2118-2133.
    [21] VECCHIO G, FENECH M, POMPA PP, VOELCKER NH. Lab-on-a-chip-based high-throughput screening of the genotoxicity of engineered nanomaterials[J]. Small, 2014, 10(13): 2721-2734.
    [22] ASHARANI PV, LOW KAH MUN G, HANDE MP, VALIYAVEETTIL S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. ACS Nano, 2009, 3(2): 279-290.
    [23] ĆURLIN M, BARBIR R, DABELIĆ S, LJUBOJEVIĆ M, GOESSLER W, MICEK V, ŽUNTAR I, PAVIĆ M, BOŽIČEVIĆ L, PAVIČIĆ I, VINKOVIĆ VRČEK I. Sex affects the response of Wistar rats to polyvinyl pyrrolidone (PVP)-coated silver nanoparticles in an oral 28 days repeated dose toxicity study[J]. Particle and Fibre Toxicology, 2021, 18(1): 38.
    [24] CHERNOUSOVA S, EPPLE M. Silver as antibacterial agent: ion, nanoparticle, and metal[J]. Angewandte Chemie (International ed. in English), 2013, 52(6): 1636-1653.
    [25] AJITHA B, ASHOK KUMAR REDDY Y, SREEDHARA REDDY P. Enhanced antimicrobial activity of silver nanoparticles with controlled particle size by pH variation[J]. Powder Technology, 2015, 269: 110-117.
    [26] KUMARI M, PANDEY S, GIRI VP, BHATTACHARYA A, SHUKLA R, MISHRA A, NAUTIYAL CS. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria[J]. Microbial Pathogenesis, 2017, 105: 346-355.
    [27] KELEŞTEMUR S, KILIC E, USLU Ü, CUMBUL A, UGUR M, AKMAN S, CULHA M. Wound healing properties of modified silver nanoparticles and their distribution in mouse organs after topical application[J]. Nano Biomedicine and Engineering, 2012, 4(4): 170-176.
    [28] RANOSZEK-SOLIWODA K, TOMASZEWSKA E, SOCHA E, KRZYCZMONIK P, IGNACZAK A, ORLOWSKI P, KRZYZOWSKA M, CELICHOWSKI G, GROBELNY J. The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles[J]. Journal of Nanoparticle Research, 2017, 19(8): 273.
    [29] TANG SH, ZHENG J. Antibacterial activity of silver nanoparticles: structural effects[J]. Advanced Healthcare Materials, 2018, 7(13): e1701503.
    [30] PARK K, PARK EJ, CHUN IK, CHOI K, LEE SH, YOON J, LEE BC. Bioavailability and toxicokinetics of citrate-coated silver nanoparticles in rats[J]. Archives of Pharmacal Research, 2011, 34(1): 153-158.
    [31] McLAIN AL, SZWEDA PA, SZWEDA LI. α-ketoglutarate dehydrogenase: a mitochondrial redox sensor[J]. Free Radical Research, 2011, 45(1): 29-36.
    [32] DU HM, WANG XL, ZHANG HY, CHEN HM, DENG XY, HE YJ, TANG HZ, DENG FC, REN ZH. Serum protein coating enhances the antisepsis efficacy of silver nanoparticles against multidrug-resistant Escherichia coli infections in mice[J]. Frontiers in Microbiology, 2023, 5(14): 1153147.
    [33] 陈学情, 蒋家璇, 任志鸿, 李娟, 张红英, 徐建国, 杜华茂. 纳米银的抗菌特性及对多重耐药菌株的抗菌作用[J]. 微生物学报, 2017, 57(4): 539-549. CHEN XQ, JIANG JX, REN ZH, LI J, ZHANG HY, XU JG, DU HM. Antibacterial activity of silver nanoparticles against multiple drug resistant strains[J]. Acta Microbiologica Sinica, 2017, 57(4): 539-549(in Chinese).
    [34] SHALEL-LEVANON S, SAN KY, BENNETT GN. Effect of oxygen, and ArcA and FNR regulators on the expression of genes related to the electron transfer chain and the TCA cycle in Escherichia coli[J]. Metabolic Engineering, 2005, 7(5/6): 364-374.
    [35] ROLFE MD, TER BEEK A, GRAHAM AI, TROTTER EW, ASIF HM, SANGUINETTI G, de MATTOS JT, POOLE RK, GREEN J. Transcript profiling and inference of Escherichia coli K-12 ArcA activity across the range of physiologically relevant oxygen concentrations[J]. The Journal of Biological Chemistry, 2011, 286(12): 10147-10154.
    [36] LEVANON SS, SAN KY, BENNETT GN. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses[J]. Biotechnology and Bioengineering, 2005, 89(5): 556-564.
    [37] BASAN M, HUI S, WILLIAMSON JR. ArcA overexpression induces fermentation and results in enhanced growth rates of E. coli[J]. Scientific Reports, 2017, 7: 11866.
    [38] CRACK JC, STAPLETON MR, GREEN J, THOMSON AJ, Le BRUN NE. Influence of association state and DNA binding on the O2-reactivity of [4Fe-4S] fumarate and nitrate reduction (FNR) regulator[J]. The Biochemical Journal, 2014, 463(1): 83-92.
    [39] TOLLA DA, SAVAGEAU MA. Regulation of aerobic-to-anaerobic transitions by the FNR cycle in Escherichia coli[J]. Journal of Molecular Biology, 2010, 397(4): 893-905.
    [40] WANG HN, GUNSALUS RP. Coordinate regulation of the Escherichia coli formate dehydrogenase fdnGHI and fdhF genes in response to nitrate, nitrite, and formate: roles for NarL and NarP[J]. Journal of Bacteriology, 2003, 185(17): 5076-5085.
    [41] BERTERO MG, ROTHERY RA, PALAK M, HOU C, LIM D, BLASCO F, WEINER JH, STRYNADKA NCJ. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A[J]. Nature Structural & Molecular Biology, 2003, 10: 681-687.
    [42] CABISCOL E, TAMARIT J, ROS J. Oxidative stress in bacteria and protein damage by reactive oxygen species[J]. International Microbiology, 2000, 3(1): 3-8.
    [43] HOLDEN ER, WEBBER MA. MarA, RamA, and SoxS as mediators of the stress response: survival at a cost[J]. Frontiers in Microbiology, 2020, 11: 828.
    [44] SPENCER ME, DARLISON MG, STEPHENS PE, DUCKENFIELD IK, GUEST JR. Nucleotide sequence of the sucB gene encoding the dihydrolipoamide succinyltransferase of Escherichia coli K12 and homology with the corresponding acetyltransferase[J]. European Journal of Biochemistry, 1984, 141(2): 361-374.
    [45] WU YH, WU M, HE GW, ZHANG X, LI WG, GAO Y, LI ZH, WANG ZY, ZHANG CG. Glyceraldehyde- 3-phosphate dehydrogenase: a universal internal control for Western blots in prokaryotic and eukaryotic cells[J]. Analytical Biochemistry, 2012, 423(1): 15-22.
    [46] EYA’ANE MEVA F, NTOUMBA AA, BELLE EBANDA KEDI P, TCHOUMBI E, SCHMITZ A, SCHMOLKE L, KLOPOTOWSKI M, MOLL B, KÖKCAM-DEMIR Ü, MPONDO MPONDO EA, LEHMAN LG, JANIAK C. Silver and palladium nanoparticles produced using a plant extract as reducing agent, stabilized with an ionic liquid: sizing by X-ray powder diffraction and dynamic light scattering[J]. Journal of Materials Research and Technology, 2019, 8(2): 1991-2000.
    [47] GUPTA A, KOIRALA AR, JOSHI B, KHANAL S, GUPTA B, PARAJULI N. Synthesis of silver nanoparticles using leaves of Taraxacum officinale and their antimicrobial activities[J]. Advanced Science, Engineering and Medicine, 2017, 9(3): 221-228.
    [48] GURUNATHAN S, HAN JW, KIM ES, PARK JH, KIM JH. Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule[J]. International Journal of Nanomedicine, 2015, 10: 2951-2969.
    [49] WEI LY, LU JR, XU HZ, PATEL A, CHEN ZS, CHEN GF. Silver nanoparticles: synthesis, properties, and therapeutic applications[J]. Drug Discovery Today, 2015, 20(5): 595-601.
    [50] SINGH R, SMITHA MS, SINGH SP. The role of nanotechnology in combating multi-drug resistant bacteria[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(7): 4745-4756.
    [51] AHAMED M, KARNS M, GOODSON M, ROWE J, HUSSAIN SM, SCHLAGER JJ, HONG YL. DNA damage response to different surface chemistry of silver nanoparticles in mammalian cells[J]. Toxicology and Applied Pharmacology, 2008, 233(3): 404-410.
    [52] SURESH AK, PELLETIER DA, WANG W, MORRELL-FALVEY JL, GU BH, DOKTYCZ MJ. Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(5): 2727-2735.
    [53] SAMBERG ME, OLDENBURG SJ, MONTEIRO- RIVIERE NA. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro[J]. Environmental Health Perspectives, 2010, 118(3): 407-413.
    [54] SURESH AK, PELLETIER DA, WANG W, MOON JW, GU BH, MORTENSEN NP, ALLISON DP, JOY DC, PHELPS TJ, DOKTYCZ MJ. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on Gram- negative and Gram-positive bacteria[J]. Environmental Science & Technology, 2010, 44(13): 5210-5215.
    [55] PERETYAZHKO TS, ZHANG QB, COLVIN VL. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes[J]. Environmental Science & Technology, 2014, 48(20): 11954-11961.
    [56] FABREGA J, FAWCETT SR, RENSHAW JC, LEAD JR. Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter[J]. Environmental Science & Technology, 2009, 43(19): 7285-7290.
    [57] GRZELAK A, WOJEWÓDZKA M, MECZYNSKA- WIELGOSZ S, ZUBEREK M, WOJCIECHOWSKA D, KRUSZEWSKI M. Crucial role of chelatable iron in silver nanoparticles induced DNA damage and cytotoxicity[J]. Redox Biology, 2018, 15: 435-440.
    [58] RIAZ AHMED KB, NAGY AM, BROWN RP, ZHANG Q, MALGHAN SG, GOERING PL. Silver nanoparticles: significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies[J]. Toxicology in Vitro: an International Journal Published in Association with BIBRA, 2017, 38: 179-192.
    [59] HSIAO IL, HSIEH YK, WANG CF, CHEN IC, HUANG YJ. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis[J]. Environmental Science & Technology, 2015, 49(6): 3813-3821.
    [60] JONES C, PALMER TE, GRIFFITHS RD. Randomized clinical outcome study of critically ill patients given glutamine-supplemented enteral nutrition[J]. Nutrition, 1999, 15(2): 108-115.
    [61] HIXT U, MULLER J. L-alanyl-glutamine: a glutamine dipeptide for paraenteral nutrition[J]. Health Perspect, 1996, 2(1): 1-5.
    [62] RAIMUNDO N, BAYSAL BE, SHADEL GS. Revisiting the TCA cycle: signaling to tumor formation[J]. Trends in Molecular Medicine, 2011, 17(11): 641-649.
    [63] BRUICK RK, McKNIGHT SL. A conserved family of prolyl-4-hydroxylases that modify HIF[J]. Science, 2001, 294(5545): 1337-1340.
    [64] McNEIL B, PAPANDREOU I, DENKO NC. Hypoxic reprograming of tumor metabolism, matching environmental supply with biosynthetic demand[M]// Tumor Hypoxia. Columbus OH: World Scientific, 2016: 147-167.
    [65] FEDELES BI, SINGH V, DELANEY JC, LI DY, ESSIGMANN JM. The AlkB family of Fe(II)/α- ketoglutarate-dependent dioxygenases: repairing nucleic acid alkylation damage and beyond[J]. The Journal of Biological Chemistry, 2015, 290(34): 20734-20742.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何雨婧,杜华茂. 靶向α-酮戊二酸脱氢酶增强纳米银的抗菌作用[J]. 微生物学报, 2024, 64(7): 2277-2294

复制
分享
文章指标
  • 点击次数:288
  • 下载次数: 551
  • HTML阅读次数: 625
  • 引用次数: 0
历史
  • 收稿日期:2023-10-22
  • 最后修改日期:2024-03-25
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码