鸭疫里默氏杆菌CH-1株37℃和42℃的转录组测序及比较分析
作者:
  • 汪思懿

    汪思懿

    西南动物疫病防控技术教育部工程研究中心, 四川 成都 611130;四川省动物疫病防控国际联合研究中心, 四川 成都 611130;动物疫病与人类健康四川省重点实验室, 四川 成都 611130;四川农业大学动物医学院 禽病防治研究中心, 四川 成都 611130
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 郭方

    郭方

    西南动物疫病防控技术教育部工程研究中心, 四川 成都 611130;四川省动物疫病防控国际联合研究中心, 四川 成都 611130;动物疫病与人类健康四川省重点实验室, 四川 成都 611130;四川农业大学动物医学院 禽病防治研究中心, 四川 成都 611130
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 程安春

    程安春

    西南动物疫病防控技术教育部工程研究中心, 四川 成都 611130;四川省动物疫病防控国际联合研究中心, 四川 成都 611130;动物疫病与人类健康四川省重点实验室, 四川 成都 611130;四川农业大学动物医学院 禽病防治研究中心, 四川 成都 611130
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 刘马峰

    刘马峰

    西南动物疫病防控技术教育部工程研究中心, 四川 成都 611130;四川省动物疫病防控国际联合研究中心, 四川 成都 611130;动物疫病与人类健康四川省重点实验室, 四川 成都 611130;四川农业大学动物医学院 禽病防治研究中心, 四川 成都 611130
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家重点研发计划(2023YFD1800200);国家自然科学基金(32273003);四川省自然科学基金(2024NSFSC0034)


Transcriptome sequencing and comparison of Riemerella anatipestifer CH-1 at 37°C and 42°C
Author:
  • WANG Siyi

    WANG Siyi

    Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, Sichuan, China;International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China;Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GUO Fang

    GUO Fang

    Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, Sichuan, China;International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China;Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Anchun

    CHENG Anchun

    Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, Sichuan, China;International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China;Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Mafeng

    LIU Mafeng

    Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education, Chengdu 611130, Sichuan, China;International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, Sichuan, China;Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, Sichuan, China;Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】鸭疫里默氏杆菌(Riemerella anatipestifer)是一种感染鸭的革兰氏阴性菌,给养鸭业造成较大经济损失。由于鸭体内温度为42 ℃,当鸭疫里默氏杆菌感染鸭后必然会调节自身基因表达来适应鸭体内温度。为鉴定鸭疫里默氏杆菌CH-1株感染鸭的适应性机制,本研究测定和比较了鸭疫里默氏杆菌CH-1株在37 ℃和42 ℃下的转录组。【方法】将鸭疫里默氏杆菌RA-CH-1株在37 ℃培养至对数生长期后,分别在37 ℃和42 ℃热应激1 h,收集菌体,提取总RNA。利用转录组测序(RNA-seq)技术获得RA-CH-1在37 ℃和42 ℃下的转录组原始数据,筛选得到差异表达基因,通过基因本体论(gene ontology, GO)数据库和京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)数据库对差异表达基因进行富集分析。选取dnaK作为热应激反应基因进行功能初步鉴定。【结果】共筛选获得234个显著差异表达基因,其中169个基因显著上调,65个基因显著下调。显著差异表达基因通过GO富集分析主要富集在核苷代谢过程、糖基化合物代谢过程和核心RNA聚合酶结合转录因子活性等;显著差异表达基因通过KEGG富集分析主要富集在氧化磷酸化、核糖体和细菌分泌系统等通路。与37 ℃条件下生长能力比较,dnaK缺失后导致鸭疫里默氏杆菌在42 ℃条件下生长能力受损。【结论】RA-CH-1在37 ℃和42 ℃下生长不受影响,通过热休克反应相关蛋白等因子表达上调或下调来应对温度升高后的应激状况。

    Abstract:

    [Objective] Riemerella anatipestifer is a Gram-negative bacterium infecting ducks, causing serious economic losses to the duck industry. After infection, R. anatipestifer regulates gene expression to adapt to the 42 ℃ body temperature of ducks. To identify the adaptation mechanism of R. anatipestifer CH-1 in ducks, we sequenced and compared the transcriptomes of R. anatipestifer CH-1 at 37 ℃ and 42 ℃. [Methods] R. anatipestifer CH-1 was cultured to the exponential growth phase at 37 ℃ and then subjected to heat stress at 37 ℃ and 42 ℃, respectively, for 1 h. The cells were then collected for the extraction of total RNA. The raw transcriptome data of the bacteria cultured at 37 ℃ and 42 ℃ were obtained by transcriptome sequencing, and differentially expressed genes (DEGs) were screened. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were carried out for the DEGs. The gene dnaK involved in the response to heat stress was selected for preliminary functional identification. [Results] A total of 234 DEGs were screened out, including 169 genes with up-regulated expression and 65 genes with down-regulated expression. The GO enrichment analysis showed that the DEGs were mainly enriched in the nucleotide metabolic process, glycosyl compound metabolic process, and core RNA polymerase binding transcription factor activity. The KEGG enrichment analysis indicated that the DEGs were mainly involved in oxidative phosphorylation, ribosomes, and bacterial secretion systems. The deletion of dnaK impaired the growth of R. anatipestifer CH-1 at 42 ℃, compared with that at 37 ℃. [Conclusion] Compared with that at 37 ℃, the growth of R. anatipestifer CH-1 was not affected at 42 ℃. The strain up-regulated or down-regulated the expression of heat shock response proteins and other factors to cope with heat stress.

    参考文献
    [1] OREN A, GARRITY GM. List of new names and new combinations previously effectively, but not validly, published[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(1): 1-5.
    [2] 程安春, 汪铭书, 陈孝跃, 朱德康, 黄城, 刘菲, 周毅, 郭宇飞, 刘兆宇, 方鹏飞. 我国鸭疫里默氏杆菌血清型调查及新血清型的发现和病原特性[J]. 中国兽医学报, 2003, 23(4): 320-323. CHENG AC, WANG MS, CHEN XY, ZHU DK, HUANG C, LIU F, ZHOU Y, GUO YF, LIU ZY, FANG PF. Epidemiology and new serotypes of Riemerella anatipestifer isolated from ducks in China and studies on their pathogenic characteristics[J]. Chinese Journal of Veterinary, 2003, 23(4): 320-323(in Chinese).
    [3] LIU JB, CHENG AC, WANG MS, LIU MF, ZHU DK, YANG Q, WU Y, JIA RY, CHEN S, ZHAO XX, ZHANG SQ, HUANG J, OU XM, MAO S, GAO Q, WEN XJ, ZHANG L, LIU YY, YU YL, TIAN B, et al. Comparative genomics and metabolomics analysis of Riemerella anatipestifer strain CH-1 and CH-2[J]. Scientific Reports, 2021, 11: 616.
    [4] MAGIORAKOS AP, SRINIVASAN A, CAREY RB, CARMELI Y, FALAGAS ME, GISKE CG, HARBARTH S, HINDLER JF, KAHLMETER G, OLSSON-LILJEQUIST B, PATERSON DL, RICE LB, STELLING J, STRUELENS MJ, VATOPOULOS A, WEBER JT, MONNET DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance[J]. Clinical Microbiology and Infection: the Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 2012, 18(3): 268-281.
    [5] ZHONG CY, CHENG AC, WANG MS, ZHU DK, LUO QH, ZHONG CD, LI L, DUAN Z. Antibiotic susceptibility of Riemerella anatipestifer field isolates[J]. Avian Diseases, 2009, 53(4): 601-607.
    [6] GYURIS É, WEHMANN E, CZEIBERT K, MAGYAR T. Antimicrobial susceptibility of Riemerella anatipestifer strains isolated from geese and ducks in Hungary[J]. Acta Veterinaria Hungarica, 2017, 65(2): 153-165.
    [7] ZHU XH, LI YL, WANG ZW, PANG ZY, SI ZS, LIU C, LU JB, CAO SL, PEI LY, LI YB. Antibiotic resistance of Riemerella anatipestifer and comparative analysis of antibiotic-resistance gene detection methods[J]. Poultry Science, 2023, 102(3): 102405.
    [8] LYU ZH, HAN SS, LI J, GUO ZY, GENG NW, LYU C, QIN LT, LI N. Epidemiological investigation and drug resistance characteristics of Riemerella anatipestifer strains from large-scale duck farms in Shandong Province, China from March 2020 to March 2022[J]. Poultry Science, 2023, 102(7): 102759.
    [9] KLANČNIK A, VUČKOVIĆ D, JAMNIK P, ABRAM M, MOŽINA SS. Stress response and virulence of heat-stressed Campylobacter jejuni[J]. Microbes and Environments, 2014, 29(4): 338-345.
    [10] LIU CC, NIU YL, ZHOU XD, ZHENG X, WANG SD, GUO Q, LI YQ, LI MY, LI JY, YANG Y, DING Y, LAMONT RJ, XU X. Streptococcus mutans copes with heat stress by multiple transcriptional regulons modulating virulence and energy metabolism[J]. Scientific Reports, 2015, 5: 12929.
    [11] ABDELWAHED EK, HUSSEIN NA, MOUSTAFA A, MONEIB NA, AZIZ RK. Gene networks and pathways involved in Escherichia coli response to multiple stressors[J]. Microorganisms, 2022, 10(9): 1793.
    [12] SCHUMANN W. Regulation of the heat shock response in bacteria[M]//Prokaryotic Chaperonins. Singapore: Springer, 2017: 21-36.
    [13] RASOULY A, RON EZ. Interplay between the heat shock response and translation in Escherichia coli[J]. Research in Microbiology, 2009, 160(4): 288-296.
    [14] CAMPBELL EA, WESTBLADE LF, DARST SA. Regulation of bacterial RNA polymerase sigma factor activity: a structural perspective[J]. Current Opinion in Microbiology, 2008, 11(2): 121-127.
    [15] RONCARATI D, SCARLATO V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output[J]. FEMS Microbiology Reviews, 2017, 41(4): 549-574.
    [16] PETIBON C, MALIK GHULAM M, CATALA M, ABOU ELELA S. Regulation of ribosomal protein genes: an ordered anarchy[J]. Wiley Interdisciplinary Reviews RNA, 2021, 12(3): e1632.
    [17] KÜHLBRANDT W. Structure and mechanisms of F-type ATP synthases[J]. Annual Review of Biochemistry, 2019, 88: 515-549.
    [18] GOLOUBINOFF P, SASSI AS, FAUVET B, BARDUCCI A, de LOS RIOS P. Chaperones convert the energy from ATP into the nonequilibrium stabilization of native proteins[J]. Nature Chemical Biology, 2018, 14: 388-395.
    [19] PACKSCHIES L, THEYSSEN H, BUCHBERGER A, BUKAU B, GOODY RS, REINSTEIN J. GrpE accelerates nucleotide exchange of the molecular chaperone DnaK with an associative displacement mechanism[J]. Biochemistry, 1997, 36(12): 3417-3422.
    [20] HARRISON C. GrpE, a nucleotide exchange factor for DnaK[J]. Cell Stress & Chaperones, 2003, 8(3): 218-224.
    [21] KĘDZIERSKA-MIESZKOWSKA S, ZOLKIEWSKI M. Hsp100 molecular chaperone ClpB and its role in virulence of bacterial pathogens[J]. International Journal of Molecular Sciences, 2021, 22(10): 5319.
    [22] HOSKINS JR, DOYLE SM, WICKNER S. Coupling ATP utilization to protein remodeling by ClpB, a hexameric AAA+ protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(52): 22233-22238.
    [23] YUAN LH, RODRIGUES PH, BÉLANGER M, DUNN W, PROGULSKE-FOX A. The Porphyromonas gingivalis clpB gene is involved in cellular invasion in vitro and virulence in vivo[J]. FEMS Immunology & Medical Microbiology, 2007, 51(2): 388-398.
    [24] SHAPIRO RS, COWEN LE. Thermal control of microbial development and virulence: molecular mechanisms of microbial temperature sensing[J]. mBio, 2012, 3(5): e00238-12.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪思懿,郭方,程安春,刘马峰. 鸭疫里默氏杆菌CH-1株37℃和42℃的转录组测序及比较分析[J]. 微生物学报, 2024, 64(7): 2368-2380

复制
分享
文章指标
  • 点击次数:348
  • 下载次数: 710
  • HTML阅读次数: 655
  • 引用次数: 0
历史
  • 收稿日期:2023-12-07
  • 最后修改日期:2024-04-07
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码