基于NADH焦磷酸酶高效表达的NMNH生物转化合成
作者:
基金项目:

国家自然科学基金(21978116);中央高校基本科研业务费专项资金(JUSRP22047)


Efficient expression of NADH pyrophosphatase promotes the synthesis of NMNH by biotransformation
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    辅酶I (nicotinamide adenine dinucleotide, NAD+)作为人体内重要的辅酶,在维持细胞生长、分化和能量代谢以及细胞保护方面起着重要作用。还原型烟酰胺单核苷酸(reduced nicotinamide mononucleotide, NMNH)是一种有效的NAD+增强剂,可以快速、高效地提高组织中NAD+水平。NADH焦磷酸酶可将还原型辅酶I (reduced nicotinamide adenine dinucleotide, NADH)转化为NMNH以促进NAD+的再生。【目的】在枯草芽孢杆菌中构建NADH焦磷酸酶表达体系并实现NMNH的生物转化合成。【方法】通过载体筛选成功在枯草芽孢杆菌WB600中实现NADH焦磷酸酶的胞内表达,结合启动子工程提升其酶活,同时通过培养基优化及5 L发酵罐放大发酵策略进一步考察重组酶的工业应用潜力。在此基础上采用全细胞催化体系进行NMNH的生物转化。【结果】NADH焦磷酸酶的初始表达酶活为1.70 U/mL,NMNH产量为135 mg/L。通过启动子工程化改造,将酶活提升了41%;此外,培养基优化及5 L发酵罐放大发酵策略将酶活进一步提升至5.02 U/mL,较摇瓶水平提升1.09倍;在此基础上采用全细胞催化体系进行NMNH生物转化,获得NMNH产量为1.20 g/L,较初始产量提高了7.88倍。【结论】本研究开发了NADH焦磷酸酶在枯草芽孢杆菌中的高效表达体系,并采用全细胞催化方式实现了NADH到NMNH的高效转化,为NMNH的生物合成提供了新思路。

    Abstract:

    [Objective] As an important coenzyme in human body, coenzyme I (nicotinamide adenine dinucleotide, NAD+) plays an important role in maintaining cell growth, differentiation, and energy metabolism and protecting cells. Reduced nicotinamide mononucleotide (NMNH), an effective NAD+ enhancer, can efficiently elevate the levels of NAD+ in tissues. NADH pyrophosphatase can transform reduced nicotinamide adenine dinucleotide (NADH) into NMNH to promote the regeneration of NAD+. The purpose of this study is to construct a NADH pyrophosphatase expression system in Bacillus subtilis and realize the synthesis of NMNH by biotransformation. [Methods] NADH pyrophosphatase was successfully expressed in B. subtilis WB600 by vector screening, and promoter engineering was employed to improve the enzyme activity. Furthermore, the industrial application potential of the recombinant enzyme was further investigated by medium optimization and amplified fermentation in a 5 L fermenter. On this basis, the whole cell catalytic system was used for biotransformation to synthesize NMNH. [Results] The initial activity of NADH pyrophosphatase and the yield of NMNH were 1.70 U/mL and 135 mg/L, respectively. After promoter engineering, the enzyme activity was improved by 41%. In addition, the enzyme activity was increased to 5.02 U/mL after optimization of the culture medium and amplified fermentation in a 5 L fermenter, which was 1.09 times higher than that in a shake flask. On this basis, the whole-cell catalytic system was used for biotransformation, and the yield of NMNH reached 1.20 g/L, which was 7.75 times higher than the initial yield. [Conclusion] We built an efficient expression system of NADH pyrophosphatase in B. subtilis and realized the efficient transformation from NADH to NMNH by whole-cell catalysis, providing a new idea for the biosynthesis of NMNH.

    参考文献
    [1] HIKOSAKA K, YAKU K, OKABE K, NAKAGAWA T. Implications of NAD metabolism in pathophysiology and therapeutics for neurodegenerative diseases[J]. Nutritional Neuroscience, 2021, 24(5): 371-383.
    [2] SULTANI G, SAMSUDEEN AF, OSBORNE B, TURNER N. NAD+: a key metabolic regulator with great therapeutic potential[J]. Journal of Neuroendocrinology, 2017, 29(10): 10.1111/jne.12508.
    [3] ZAPATA-PÉREZ R, TAMMARO A, SCHOMAKERS BV, SCANTLEBERY AML, DENIS S, ELFRINK HL, GIROUD-GERBETANT J, CANTÓ C, LÓPEZ-LEONARDO C, McINTYRE RL, van WEEGHEL M, SÁNCHEZ-FERRER Á, HOUTKOOPER RH. Reduced nicotinamide mononucleotide is a new and potent NAD+ precursor in mammalian cells and mice[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2021, 35(4): e21456.
    [4] LIU Y, LUO CT, LI T, ZHANG WH, ZONG ZY, LIU XH, DENG HT. Reduced nicotinamide mononucleotide (NMNH) potently enhances NAD+ and suppresses glycolysis, the TCA cycle, and cell growth[J]. Journal of Proteome Research, 2021, 20(5): 2596-2606.
    [5] YOSHIMURA K, SHIGEOKA S. Versatile physiological functions of the Nudix hydrolase family in Arabidopsis[J]. Bioscience, Biotechnology, and Biochemistry, 2015, 79(3): 354-366.
    [6] DOBRZANSKA M, SZURMAK B, WYSLOUCH-CIESZYNSKA A, KRASZEWSKA E. Cloning and characterization of the first member of the Nudix family from Arabidopsis thaliana[J]. The Journal of Biological Chemistry, 2002, 277(52): 50482-50486.
    [7] WANG XD, GU J, WANG T, BI LJ, ZHANG ZP, CUI ZQ, WEI HP, DENG JY, ZHANG XN. Comparative analysis of mycobacterial NADH pyrophosphatase isoforms reveals a novel mechanism for isoniazid and ethionamide inactivation[J]. Molecular Microbiology, 2011, 82(6): 1375-1391.
    [8] LIU Y, GONG JS, MARSHALL G, SU C, HALL M, LI H, XU GQ, SHI JS, XU ZH. Protein engineering of NADH pyrophosphatase for efficient biocatalytic production of reduced nicotinamide mononucleotide[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1159965.
    [9] FRICK DN, BESSMAN MJ. Cloning, purification, and properties of a novel NADH pyrophosphatase. Evidence for a nucleotide pyrophosphatase catalytic domain in MutT-like enzymes[J]. The Journal of Biological Chemistry, 1995, 270(4): 1529-1534.
    [10] XU W, DUNN CA, BESSMAN MJ. Cloning and characterization of the NADH pyrophosphatases from Caenorhabditis elegans and Saccharomyces cerevisiae, members of a Nudix hydrolase subfamily[J]. Biochemical and Biophysical Research Communications, 2000, 273(2): 753-758.
    [11] ABDELRAHEIM SR, SPILLER DG, McLENNAN AG. Mammalian NADH diphosphatases of the Nudix family: cloning and characterization of the human peroxisomal NUDT12 protein[J]. The Biochemical Journal, 2003, 374(Pt 2): 329-335.
    [12] SCHUMANN W. Production of recombinant proteins in Bacillus subtilis[J]. Advances in Applied Microbiology, 2007, 62: 137-189.
    [13] LIU YF, LI JH, DU GC, CHEN J, LIU L. Metabolic engineering of Bacillus subtilis fueled by systems biology: recent advances and future directions[J]. Biotechnology Advances, 2017, 35(1): 20-30.
    [14] YE J, LI YJ, BAI YQ, ZHANG T, JIANG W, SHI T, WU ZJ, ZHANG YH PJ. A facile and robust T7-promoter-based high-expression of heterologous proteins in Bacillus subtilis[J]. Bioresources and Bioprocessing, 2022, 9(1): 56.
    [15] CUI WJ, HAN LC, SUO FY, LIU ZM, ZHOU L, ZHOU ZM. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond[J]. World Journal of Microbiology and Biotechnology, 2018, 34(10): 145.
    [16] DONG HN, ZHANG DW. Current development in genetic engineering strategies of Bacillus species[J]. Microbial Cell Factories, 2014, 13: 63.
    [17] XU KD, TONG Y, LI Y, TAO J, RAO SQ, LI JH, ZHOU JW, LIU S. Efficient, flexible autoinduction expression systems with broad initiation in Bacillus subtilis[J]. ACS Synthetic Biology, 2021, 10(11): 3084-3093.
    [18] ZHOU JJ, WU GJ, ZHENG J, ABDALMEGEED D, WANG MX, SUN SW, SEDJOAH RC AA, SHAO YT, SUN S, XIN ZH. Research on the regulation of plipastatin production by the quorum-sensing ComQXPA system of Bacillus amyloliquefaciens[J]. Journal of Agricultural and Food Chemistry, 2023, 71(28): 10683-10692.
    [19] GUAN CR, CUI WJ, CHENG JT, ZHOU L, LIU ZM, ZHOU ZM. Development of an efficient autoinducible expression system by promoter engineering in Bacillus subtilis[J]. Microbial Cell Factories, 2016, 15: 66.
    [20] LI X, ZENG WC, ZHU DY, FENG JL, TIAN CC, LIAO XP, SHI B. Investigation of collagen hydrolysate used as carbon and nitrogen source in the fermentation of Bacillus pumilus[J]. Process Biochemistry, 2017, 55: 11-16.
    [21] KUHAD RC, GUPTA R, KHASA YP, SINGH A, ZHANG YH P. Bioethanol production from pentose sugars: current status and future prospects[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4950-4962.
    [22] MILDVAN AS, XIA Z, AZURMENDI HF, SARASWAT V, LEGLER PM, MASSIAH MA, GABELLI SB, BIANCHET MA, KANG LW, AMZEL LM. Structures and mechanisms of Nudix hydrolases[J]. Archives of Biochemistry and Biophysics, 2005, 433(1): 129-143.
    [23] LI QY, LEI YG, HU GY, LEI YZ, DAN DM. Effects of Tween 80 on the liquid fermentation of Lentinus edodes[J]. Food Science and Biotechnology, 2018, 27(4): 1103-1109.
    [24] ROCCHIO J, NEILSEN J, EVERETT K, BOTHUN GD. A solvent-free lecithin-Tween 80 system for oil dispersion[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 218-223.
    [25] ZHAO WW, WANG YL. Coacervation with surfactants: from single-chain surfactants to gemini surfactants[J]. Advances in Colloid and Interface Science, 2017, 239: 199-212.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李雪媛,龚劲松,苏畅,李恒,徐国强,许正宏,史劲松. 基于NADH焦磷酸酶高效表达的NMNH生物转化合成[J]. 微生物学报, 2024, 64(7): 2419-2433

复制
分享
文章指标
  • 点击次数:359
  • 下载次数: 631
  • HTML阅读次数: 769
  • 引用次数: 0
历史
  • 收稿日期:2023-12-16
  • 最后修改日期:2024-03-18
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码