中国植物丛枝菌根侵染特征研究
作者:
基金项目:

国家自然科学基金(32171620);河南省科技攻关项目(232102111005);海南省重点研发计划(ZDYF2024XDNY172);河南省自然科学基金(222300420146)


Colonization characteristics of arbuscular mycorrhizal fungi in plants distributed in China
Author:
  • MA Luping

    MA Luping

    College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China;Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, Henan, China;Henan Rural Human Settlement Environment Engineering Center, Luoyang 471023, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SHI Zhaoyong

    SHI Zhaoyong

    College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China;Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, Henan, China;Henan Rural Human Settlement Environment Engineering Center, Luoyang 471023, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Mengge

    ZHANG Mengge

    College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China;Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, Henan, China;Henan Rural Human Settlement Environment Engineering Center, Luoyang 471023, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YUAN Mingli

    YUAN Mingli

    College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China;Luoyang Key Laboratory of Symbiotic Microorganism and Green Development, Luoyang 471023, Henan, China;Henan Rural Human Settlement Environment Engineering Center, Luoyang 471023, Henan, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [40]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    丛枝菌根真菌在生态系统和植物生长过程中发挥着重要作用,目前对其生理生态功能的研究备受关注,但主要集中在丛枝菌根真菌对植物促生作用方面。植物的菌根侵染特征是表征真菌与植物共生紧密程度的重要标志,也是评价植物生态适应性的关键指标,然而针对我国植物丛枝菌根发育特征及其分布特点的系统性研究尚属空白。【目的】探究我国植物丛枝菌根真菌的侵染特征,及其在不同生态系统和气候区域中的分布规律,为推动丛枝菌根研究的发展提供基础数据。【方法】利用全球植物菌根数据库“FungalRoot”和605篇中文文献的植物菌根侵染特征数据,并补充生态系统、气候区域、植物类型和植物生长年限等共47 700组数据,建立了中国植物丛枝菌根侵染信息数据库,并以此为基础进行研究。【结果】我国植物丛枝菌根真菌侵染率在0-55%占69.7%,55%-100%占30.3%,绝大多数植物丛枝菌根真菌侵染强度、菌丝丰度、泡囊丰度和丛枝丰度均分布在40.0%以下。丛枝菌根共生形态中,A型占比最大,为56.3%。农田、荒漠、草地生态系统的植物丛枝菌根真菌侵染率相近,分别为51.8%、51.6%、51.8%,而森林生态系统的侵染率较低,为40.4%。荒漠生态系统植物的丛枝菌根真菌侵染强度、菌丝丰度、泡囊丰度和丛枝丰度最高,分别达到46.0%、47.1%、37.2%和31.2%。根据气候区域,植物的侵染水平由高到低排序为暖温带(53.3%)>热带(50.0%)>中温带(45.2%)>亚热带(42.2%)。草本植物的侵染水平高于木本植物,多年生植物高于一年生植物。木本植物中,灌木的侵染率水平最高,为46.3%,其次是乔木和藤本植物,均为43.9%。草本植物在侵染强度和菌丝丰度上高于木本植物,分别为30.2%和32.5%,而木本植物在泡囊和丛枝丰度方面具有优势,分别为19.5%和23.4%。我国丛枝菌根植物中,被子植物占据绝大多数,共有110科,占比达到90.2%,蕨类、裸子、石松门植物较少。【结论】我国大部分植物丛枝菌根真菌侵染率在55%以下,侵染特征等指标分布在40.0%以下;同时,不同生态系统、气候区域、植物类型和生长年限均会对侵染特征产生不同程度的影响。

    Abstract:

    Arbuscular mycorrhizal fungi play important roles in ecosystems and plant growth. The physiological and ecological roles of arbuscular mycorrhizal fungi, especially in promoting plant growth, have attracted much attention. The colonization characteristics of arbuscular mycorrhizal fungi, as vital indicators of the symbiotic relationship between arbuscular mycorrhizal fungi and plants, are key parameters to evaluate the ecological adaptability of plants. However, systematic and comprehensive studies remain to be carried out regarding the colonization characteristics of arbuscular mycorrhizal fungi in the plants growing in China. [Objective] This study explored the colonization parameters of arbuscular mycorrhizal fungi in the plants growing in China, as well as their distribution in different ecosystems and climate regions, aiming to provide fundamental data to advance the research on mycorrhizae. [Methods] A database of arbuscular mycorrhizal fungi colonizing plants growing in China was established with the data from FungalRoot and 605 Chinese papers. Furthermore, the database was supplemented with 47 700 data sets including mycorrhizal colonization characteristics, ecosystem types, climate regions, plant types, and plant growth years. The analysis in this study was then performed based on this database. [Results] In China, 69.7% and 30.3% plants exhibited the arbuscular mycorrhizal fungal colonization rates ranging from 0 to 55% and from 55% to 100%, respectively. The majority of plants showed the arbuscular mycorrhizal fungal colonization intensity, hyphal abundance, vesicular abundance, and arbuscular abundance below 40.0%. Among the symbiotic forms of arbuscular mycorrhizal fungi, type A was the most prevalent, existing in 56.3% plants. Arbuscular mycorrhizal fungi demonstrated similar colonization rates in farmland, desert, and grassland ecosystems (51.8%, 51.6%, and 51.8%, respectively) and a low colonization rate (40.4%) in forest ecosystems. The plants in desert ecosystems showcased the highest arbuscular mycorrhizal fungal colonization intensity, hyphal abundance, vesicular abundance, and arbuscular abundance, which reached 46.0%, 47.1%, 37.2%, and 31.2%, respectively. In different climate regions, the colonization level followed the trend of warm temperate zone (53.3%)>tropical zone (50.0%)>temperate zone (45.2%)>subtropical zone (42.2%). The colonization level was higher in herbaceous plants than in woody plants, and higher in perennial plants than in annual plants. Among woody plants, shrubs had the highest colonization rate at 46.3%, followed by trees and vines, both at 43.9%. Herbaceous plants had higher colonization intensity (30.2%) and hyphal abundance (32.5%) than woody plants, while woody plants had higher vesicular abundance (19.5%) and arbuscular abundance (23.4%). Among the plants colonized by arbuscular mycorrhizal fungi, angiosperms accounted for the majority (90.2%, belonging to 110 families), while ferns, gymnosperms, and lycophytes were less common. [Conclusion] In China, arbuscular mycorrhizal fungi showed the colonization rate below 55% and colonization indicators below 40.0% in most plants. Different ecosystems, climate regions, plant types, and plant growth years affected the colonization status to different degrees.

    参考文献
    [1] FRANK B. On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885)[J]. Mycorrhiza, 2005, 15(4): 267-275.
    [2] 刘润进. 菌根真菌是唱响生物共生交响曲的主角: 菌根真菌专辑序言[J]. 菌物学报, 2017, 36(7): 791-799. LIU RJ. Mycorrhizal fungi are the main actor of singing biological symbiosis symphony[J]. Mycosystema, 2017, 36(7): 791-799(in Chinese).
    [3] RIMINGTON WR, DUCKETT JG, FIELD KJ, BIDARTONDO MI, PRESSEL S. The distribution and evolution of fungal symbioses in ancient lineages of land plants[J]. Mycorrhiza, 2020, 30(1): 23-49.
    [4] AL-ANI MAM. Distribution of the arbuscular mycorrhizal fungi in AlJabal alakhdar area, East Libya[J]. Kirkuk University Journal-Scientific Studies, 2016, 11(3): 115-135.
    [5] REDECKER D, KODNER R, GRAHAM LE. Glomalean fungi from the Ordovician[J]. Science, 2000, 289(5486): 1920-1921.
    [6] HEWINS CR, CARRINO-KYKER SR, BURKE DJ. Seasonal variation in mycorrhizal fungi colonizing roots of Allium tricoccum (wild leek) in a mature mixed hardwood forest[J]. Mycorrhiza, 2015, 25(6): 469-483.
    [7] BAINARD LD, CHAGNON PL, CADE-MENUN BJ, LAMB EG, LaFORGE K, SCHELLENBERG M, HAMEL C. Plant communities and soil properties mediate agricultural land use impacts on arbuscular mycorrhizal fungi in the Mixed Prairie ecoregion of the North American Great Plains[J]. Agriculture, Ecosystems & Environment, 2017, 249: 187-195.
    [8] 石兆勇, 高双成, 王发园. 荒漠生态系统中丛枝菌根真菌多样性[J]. 干旱区研究, 2008, 25(6): 783-789. SHI ZY, GAO SC, WANG FY. Biodiversity of arbuscular mycorrhizal fungi in desert ecosystems[J]. Arid Zone Research, 2008, 25(6): 783-789(in Chinese).
    [9] van GEEL M, JACQUEMYN H, PLUE J, SAAR L, KASARI L, PEETERS G, van ACKER K, HONNAY O, CEULEMANS T. Abiotic rather than biotic filtering shapes the arbuscular mycorrhizal fungal communities of European seminatural grasslands[J]. The New Phytologist, 2018, 220(4): 1262-1272.
    [10] 王永明, 范洁群, 石兆勇. 中国丛枝菌根真菌分子多样性[J]. 微生物学通报, 2018, 45(11): 2399-2408. WANG YM, FAN JQ, SHI ZY. Molecular diversity of arbuscular mycorrhizal fungal in China[J]. Microbiology China, 2018, 45(11): 2399-2408(in Chinese).
    [11] 马路平, 石兆勇, 韦文敬, 杨爽. 基于Meta分析菌根菌对植物叶片生理的影响[J]. 草业学报, 2024, 33(4): 99-109. MA LP, SHI ZY, WEI WJ, YANG S. Meta-analysis of the effects of mycorrhizal fungi on plant leaf physiology[J]. Acta Prataculturae Sinica, 2024, 33(4): 99-109(in Chinese).
    [12] AUGÉ RM. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis[J]. Mycorrhiza, 2001, 11(1): 3-42.
    [13] 王晓英, 王冬梅, 陈保冬, 黄益宗, 王幼珊. 丛枝菌根真菌群落对白三叶草生长的影响[J]. 生态学报, 2010, 30(6): 1456-1462. WANG XY, WANG DM, CHEN BD, HUANG YZ, WANG YS. Growth response of white clover to inoculation with different arbuscular mycorrhizal fungi communities[J]. Acta Ecologica Sinica, 2010, 30(6): 1456-1462(in Chinese).
    [14] 杨玲, 王国华, 任立成, 赵之伟. 苋科植物的丛枝菌根[J]. 云南植物研究, 2002, 24(1): 37-40. YANG L, WANG GH, REN LC, ZHAO ZW. Arbuscular mycorrhizae of the family Amaranthaceae[J]. Acta Botanica Yunnanica, 2002, 24(1): 37-40(in Chinese).
    [15] SOUDZILOVSKAIA NA, VAESSEN S, BARCELO M, HE JH, RAHIMLOU S, ABARENKOV K, BRUNDRETT MC, GOMES SIF, MERCKX V, TEDERSOO L. FungalRoot: global online database of plant mycorrhizal associations[J]. The New Phytologist, 2020, 227(3): 955-966.
    [16] MAITRA P, ZHENG Y, CHEN L, WANG YL, JI NN, LÜ PP, GAN HY, LI XC, SUN X, ZHOU XH, GUO LD. Effect of drought and season on arbuscular mycorrhizal fungi in a subtropical secondary forest[J]. Fungal Ecology, 2019, 41: 107-115.
    [17] 史雪荣, 黄宏亮, 季杭翔, 赵明水, 张华锋, 李全, 宋新章. 氮和生物炭添加对毛竹林AMF侵染率和孢子密度的影响[J]. 林业科学研究, 2023, 36(4): 165-172. SHI XR, HUANG HL, JI HX, ZHAO MS, ZHANG HF, LI Q, SONG XZ. Effects of nitrogen and biochar addition on arbuscular mycorrhizal fungi colonization rate and spore density in moso bamboo plantations[J]. Forest Research, 2023, 36(4): 165-172(in Chinese).
    [18] CHENG Y, ISHIMOTO K, KURIYAMA Y, OSAKI M, EZAWA T. Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities[J]. Plant and Soil, 2013, 365(1): 397-407.
    [19] WANG MY, HU LB, WANG WH, LIU ST, LI M, LIU RJ. Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi[J]. Pedosphere, 2009, 19(5): 663-672.
    [20] TIAN H, DRIJBER RA, NIU XS, ZHANG JL, LI XL. Spatio-temporal dynamics of an indigenous arbuscular mycorrhizal fungal community in an intensively managed maize agroecosystem in north China[J]. Applied Soil Ecology, 2011, 47(3): 141-152.
    [21] 林先贵, 郝文英, 施亚琴. 三种除草剂对VA菌根真菌的侵染和植物生长的影响[J]. 环境科学学报, 1991, 11(4): 439-444. LIN XG, HAO WY, SHI YQ. Effects of three herbicides on VA mycorrhizal infection and plant growth[J]. Acta Scientiae Circumstantiae, 1991, 11(4): 439-444(in Chinese).
    [22] MENENDEZ A, MARTÍNEZ A, CHIOCCHIO V, VENEDIKIAN N, OCAMPO JA, GODEAS A. Influence of the insecticide dimethoate on arbuscular mycorrhizal colonization and growth in soybean plants[J]. International Microbiology, 1999, 2(1): 43-45.
    [23] JIN HY, GERMIDA JJ, WALLEY FL. Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species[J]. Applied Soil Ecology, 2013, 72: 22-30.
    [24] 赵玲, 滕应, 骆永明. 中国农田土壤农药污染现状和防控对策[J]. 土壤, 2017, 49(3): 417-427. ZHAO L, TENG Y, LUO YM. Present pollution status and control strategy of pesticides in agricultural soils in China: a review[J]. Soils, 2017, 49(3): 417-427(in Chinese).
    [25] 杨康, 孙建茹, 王妍, 杜鄂巍, 蒙彦良, 桑晓玲, 张风娟. 入侵植物与本地植物互作对丛枝菌根真菌AMF侵染率的影响[J]. 菌物学报, 2019, 38(11): 1938-1947. YANG K, SUN JR, WANG Y, DU EW, MENG YL, SANG XL, ZHANG FJ. Effects of invasive plants interacting with native plants on colonization of arbuscular mycorrhizal fungi[J]. Mycosystema, 2019, 38(11): 1938-1947(in Chinese).
    [26] GHANTA R, SEN M, DUTTA S. An investigation on arbuscular mycorrhizal colonization in some pteridophytes of West Bengal, India[J]. International Journal of Advanced Research in Biological Sciences (IJARBS), 2016, 3(11): 143-153.
    [27] 曾凯, 张欣然, 刘赛博, 黄丹, 辛国荣, 黄晓辰. 9种蕨类植物丛枝菌根真菌侵染的结构观察[J]. 西北植物学报, 2023, 43(5): 772-780. ZENG K, ZHANG XR, LIU SB, HUANG D, XIN GR, HUANG XC. Structural observation on arbuscular mycorrhizal fungal infection of nine species of pteridophytes[J]. Acta Botanica Boreali-Occidentalia Sinica, 2023, 43(5): 772-780(in Chinese).
    [28] BESSERER A, BECARD G, JAUNEAU A, ROUX C, SEJALON-DELMAS N. GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism[J]. Plant Physiology, 2008, 148(1): 402-413.
    [29] 梁月明, 苏以荣, 何寻阳, 陈香碧. 岩溶区典型灌丛植物根系丛枝菌根真菌群落结构解析[J]. 环境科学, 2018, 39(12): 5657-5664. LIANG YM, SU YR, HE XY, CHEN XB. Structure analysis of arbuscular mycorrhizal in roots from different shrubs in Karst regions[J]. Environmental Science, 2018, 39(12): 5657-5664(in Chinese).
    [30] 王发园, 刘润进. 环境因子对AM真菌多样性的影响[J]. 生物多样性, 2001, 9(3): 301-305. WANG FY, LIU RJ. Effects of environmental factors on the diversity of arbuscular mycorrhizal fungi[J]. Chinese Biodiversity, 2001, 9(3): 301-305(in Chinese).
    [31] 张慧, 韩冰, 董全民, 吕进英, 史雅楠, 周华坤, 邵新庆. AMF及短期增温增雨互作对植物吸收氮磷功能的影响[J]. 草地学报, 2020, 28(4): 1034-1042. ZHANG H, HAN B, DONG QM, LÜ JY, SHI YN, ZHOU HK, SHAO XQ. Effects of AMF inoculation, short-term warming and increasing precipitation on nitrogen and phosphorus absorption of plant[J]. Acta Agrestia Sinica, 2020, 28(4): 1034-1042(in Chinese).
    [32] WILSON H, JOHNSON BR, BOHANNAN B, PFEIFER-MEISTER L, MUELLER R, BRIDGHAM SD. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient[J]. PeerJ, 2016, 4: e2083.
    [33] SANDERS IR, CROLL D. Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner[J]. Annual Review of Genetics, 2010, 44: 271-292.
    [34] 邱虎森, 苏以荣, 黎蕾, 何寻阳, 陈香碧, 李杨. 典型喀斯特高原坡地土壤养分分布及其影响因素[J]. 土壤, 2013, 45(6): 985-991. QIU HS, SU YR, LI L, HE XY, CHEN XB, LI Y. Distribution of soil nutrients and its influencing factors in slope of typical Karst Plateau[J]. Soils, 2013, 45(6): 985-991(in Chinese).
    [35] 刘娜, 赵泽宇, 姜喜铃, 邢晓科. 菌根真菌提高植物抗旱性机制的研究回顾与展望[J]. 菌物学报, 2021, 40(4): 851-872. LIU N, ZHAO ZY, JIANG XL, XING XK. Review and prospect of researches on the mechanisms of mycorrhizal fungi in improving plant drought resistance[J]. Mycosystema, 2021, 40(4): 851-872(in Chinese).
    [36] TAN M, HASSAN MJ, PENG Y, FENG GY, HUANG LK, LIU L, LIU W, HAN LB, LI Z. Polyamines metabolism interacts with γ-aminobutyric acid, proline and nitrogen metabolisms to affect drought tolerance of creeping bentgrass[J]. International Journal of Molecular Sciences, 2022, 23(5): 2779.
    [37] 周婀, 李勃, 马瑜. 太白山野生桃儿七内生真菌群落组成及多样性[J]. 生物技术, 2023, 33(1): 14-18, 47. ZHOU E, LI B, MA Y. Community composition and diversity characteristics of endophytic fungi isolated from wild Sinopodophyllum hexandrum in Taibai Mountain[J]. Biotechnology, 2023, 33(1): 14-18, 47(in Chinese).
    [38] LIU JW, ZHAO J, WANG G, CHEN J. Host identity and phylogeny shape the foliar endophytic fungal assemblages of Ficus[J]. Ecology and Evolution, 2019, 9(18): 10472-10482.
    [39] MILLER WA, ROY KW. Mycoflora of soybean leaves, pods, and seeds in Mississippi[J]. Canadian Journal of Botany, 1982, 60(12): 2716-2723.
    [40] SIVAKUMAR N. Effect of edaphic factors and seasonal variation on spore density and root colonization of arbuscular mycorrhizal fungi in sugarcane fields[J]. Annals of Microbiology, 2013, 63(1): 151-160.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马路平,石兆勇,张梦歌,苑明莉. 中国植物丛枝菌根侵染特征研究[J]. 微生物学报, 2024, 64(7): 2566-2582

复制
分享
文章指标
  • 点击次数:392
  • 下载次数: 617
  • HTML阅读次数: 654
  • 引用次数: 0
历史
  • 收稿日期:2023-12-08
  • 最后修改日期:2024-03-19
  • 在线发布日期: 2024-07-06
  • 出版日期: 2024-07-04
文章二维码