糖基转移酶WekM参与禽致病性大肠杆菌脂多糖合成和环境适应
作者:
  • 曹启予

    曹启予

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 高宇杰

    高宇杰

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 张晓荟

    张晓荟

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 陈歆丹

    陈歆丹

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 罗平

    罗平

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 翟瑞东

    翟瑞东

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 韩先干

    韩先干

    中国农业科学院上海兽医研究所, 上海 201199
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋厚辉

    宋厚辉

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 程昌勇

    程昌勇

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 于纪棉

    于纪棉

    宁波卫生职业技术学院, 浙江 宁波 315100
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 韩月

    韩月

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家重点研发计划(2023YFD1801000);国家自然科学基金(31902280,32102671);浙江省自然科学基金(LQ24C010005)


The glycosyltransferase WekM is involved in the lipopolysaccharide biosynthesis and environmental adaptation of avian pathogenic Escherichia coli
Author:
  • CAO Qiyu

    CAO Qiyu

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GAO Yujie

    GAO Yujie

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHANG Xiaohui

    ZHANG Xiaohui

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xindan

    CHEN Xindan

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LUO Ping

    LUO Ping

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAI Ruidong

    ZHAI Ruidong

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HAN Xiangan

    HAN Xiangan

    Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 201199, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Houhui

    SONG Houhui

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Changyong

    CHENG Changyong

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YU Jimian

    YU Jimian

    Ningbo College of Health Sciences, Ningbo 315100, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HAN Yue

    HAN Yue

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 研究O1血清型禽致病性大肠杆菌(avian pathogenic Escherichia coli, APEC)的O-抗原糖基转移酶WekM在脂多糖合成和环境适应中的作用。【方法】 采用Red同源重组方法,构建APEC O1菌株的wekM基因缺失株,并构建wekM回补株。随后分析wekM基因对APEC O1菌株生长和运动能力的影响,通过银染和western blotting鉴定细菌脂多糖(lipopolysaccharide, LPS)图谱以及与兔抗O1血清的反应能力,通过实时荧光定量PCR测定细菌鞭毛相关基因转录水平,使用溴化乙锭测定细菌细胞膜通透性。最后,通过药敏试验检测细菌对环丙沙星等抗生素敏感性。【结果】 PCR验证及DNA测序结果表明ΔwekM缺失株和回补株构建成功。银染鉴定ΔwekM缺失株较野生株LPS图谱不完整,部分O-抗原条带缺失;同时,western blotting检测未见到ΔwekM与O因子血清的反应条带,这说明O-抗原糖基转移酶wekM基因缺失后影响LPS合成。生长运动能力分析显示,ΔwekM缺失株的运动能力较野生株显著减弱,生长速率与野生株一致。实时荧光定量PCR检测发现,ΔwekM缺失株的flgC等鞭毛相关基因转录水平降低,表明wekM基因影响细菌鞭毛的合成。此外,ΔwekM的细胞膜通透性较野生株显著增加(P<0.01),药敏结果也显示,ΔwekM缺失株较野生株对多黏菌素等7种抗生素敏感性增加,这说明wekM缺失后细菌细胞膜理化性质改变,适应环境的能力降低。【结论】 本研究揭示了禽致病性大肠杆菌糖基转移酶wekM基因缺失导致细菌LPS完整性受损,运动能力降低,鞭毛合成受阻,鞭毛形成基因转录水平下降,细胞膜通透性增强,对抗生素敏感性增加。这些结果为解析wekM基因的功能奠定了研究基础,有助于深入了解禽致病性大肠杆菌O1的环境适应机制。

    Abstract:

    [Objective] To investigate the role of WekM, the O-antigen glycosyltransferase of avian pathogenic Escherichia coli (APEC) O1, in lipopolysaccharide biosynthesis and environmental adaptation. [Methods] The wekM-deleted strain ΔwekM of APEC O1 was constructed by Red homologous recombination, and then the complementary strain CΔwekM was constructed. The impacts of wekM on bacterial growth and motility were examined. The lipopolysaccharide (LPS) profile and reactivity with rabbit anti-O1 serum of each strain were identified by silver staining and Western blotting. Real-time fluorescence quantitative PCR was conducted to determine the transcriptional levels of flagellum-related genes, and ethidium bromide was used to measure the bacterial cell membrane permeability. Finally, the drug sensitivity test was carried out to identify the bacterial susceptibility to antibiotics such as ciprofloxacin. [Results] The constructed ΔwekM and CΔwekM were verified by PCR amplification and DNA sequencing. Compared with the wild type, ΔwekM showed incomplete LPS profile and absence of some O-antigen bands. Western blotting results showed that ΔwekM did not react with the anti-O1 serum, suggesting that the loss of WekM impaired the LPS production. The deletion of wekM reduced the swimming motility and did not impact the bacterial growth rate compared with the wild type. The transcription levels of flagellum-related genes such as flgC were down-regulated in ΔwekM. The results implied that the reduced motility of ΔwekM was caused by the decrease in flagellar production. In addition, ΔwekM demonstrated increased cell membrane permeability compared with the wild type (P<0.01), and ΔwekM improved bacterial sensitivity to 7 antibiotics including polymyxin. This result suggested that the adaptability of ΔwekM to the environment was inhibited due to the increased cell membrane permeability. [Conclusion] The deletion of wekM in APEC results in diminished swimming motility, increased antibiotic resistance, improved cell membrane permeability, and damaged LPS integrity. The findings lay a foundation for mining the role of wekM and enrich our understanding of the stress resistance mechanism of APEC.

    参考文献
    [1] KATHAYAT D, LOKESH D, RANJIT S, RAJASHEKARA G. Avian pathogenic Escherichia coli (APEC): an overview of virulence and pathogenesis factors, zoonotic potential, and control strategies[J]. Pathogens, 2021, 10(4): 467.
    [2] PAUDEL S, FINK D, ABDELHAMID MK, ZÖGGELER A, LIEBHART D, HESS M, HESS C. Aerosol is the optimal route of respiratory tract infection to induce pathological lesions of colibacillosis by a lux-tagged avian pathogenic Escherichia coli in chickens[J]. Avian Pathology, 2021, 50(5): 417-426.
    [3] LI XZ, PLÉSIAT P, NIKAIDO H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria[J]. Clinical Microbiology Reviews, 2015, 28(2): 337-418.
    [4] MÜHLRADT PF, GOLECKI JR. Asymmetrical distribution and artifactual reorientation of lipopolysaccharide in the outer membrane bilayer of Salmonella typhimurium[J]. European Journal of Biochemistry, 1975, 51(2): 343-352.
    [5] PUTKER F, BOS MP, TOMMASSEN J. Transport of lipopolysaccharide to the Gram-negative bacterial cell surface[J]. FEMS Microbiology Reviews, 2015, 39(6): 985-1002.
    [6] DOMÍNGUEZ-MEDINA CC, PÉREZ-TOLEDO M, SCHAGER AE, MARSHALL JL, COOK CN, BOBAT S, HWANG H, CHUN BJ, LOGAN E, BRYANT JA, CHANNELL WM, MORRIS FC, JOSSI SE, ALSHAYEA A, ROSSITER AE, BARROW PA, HORSNELL WG, MACLENNAN CA, HENDERSON IR, LAKEY JH, et al. Outer membrane protein size and LPS O-antigen define protective antibody targeting to the Salmonella surface[J]. Nature Communications, 2020, 11: 851.
    [7] WHITFIELD C, TRENT MS. Biosynthesis and export of bacterial lipopolysaccharides[J]. Annual Review of Biochemistry, 2014, 83: 99-128.
    [8] MURRAY GL, ATTRIDGE SR, MORONA R. Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement[J]. Journal of Bacteriology, 2006, 188(7): 2735-2739.
    [9] MOFFATT JH, HARPER M, HARRISON P, HALE JDF, VINOGRADOV E, SEEMANN T, HENRY R, CRANE B, ST MICHAEL F, COX AD, ADLER B, NATION RL, LI J, BOYCE JD. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production[J]. Antimicrobial Agents and Chemotherapy, 2010, 54(12): 4971-4977.
    [10] HITCHCOCK PJ, BROWN TM. Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels[J]. Journal of Bacteriology, 1983, 154(1): 269-277.
    [11] SIMPSON BW, TRENT MS. Pushing the envelope: LPS modifications and their consequences[J]. Nature Reviews Microbiology, 2019, 17: 403-416.
    [12] MARTORANA AM, MOTTA S, Di SILVESTRE D, FALCHI F, DEHÒ G, MAURI P, SPERANDEO P, POLISSI A. Dissecting Escherichia coli outer membrane biogenesis using differential proteomics[J]. PLoS One, 2014, 9(6): e100941.
    [13] SPERANDEO P, MARTORANA AM, POLISSI A. Lipopolysaccharide biosynthesis and transport to the outer membrane of Gram-negative bacteria[J]. Bacterial Cell Walls and Membranes, 2019, 92: 9-37.
    [14] VALVANO MA. Export of O-specific lipopolysaccharide[J]. Frontiers in Bioscience, 2003, 8: s452-s471.
    [15] HAN Y, LUO P, ZENG H, WANG P, XU JL, CHEN PJ, CHEN XD, CHEN YJ, CAO QY, ZHAI RD, XIA J, DENG SM, CHENG AC, CHENG CY, SONG HH. The effect of O-antigen length determinant wzz on the immunogenicity of Salmonella Typhimurium for Escherichia coli O2 O-polysaccharides delivery[J]. Veterinary Research, 2023, 54(1): 15.
    [16] 连丽燕, 宋祥军, 蒋胡艳, 陈兆国, 蒋蔚, 韩先干, 祁克宗. Ⅵ型分泌系统分泌蛋白ClpV对禽致病性大肠杆菌生物学特性的影响[J]. 中国预防兽医学报, 2021, 43(8): 848-853. LIAN LY, SONG XJ, JIANG HY, CHEN ZG, JIANG W, HAN XG, QI KZ. Effects of type Ⅵ secretion system secreted protein ClpV on biological characteristics of avian pathogenic Escherichia coli[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(8): 848-853(in Chinese).
    [17] MURATA T, TSENG W, GUINA TN, MILLER SI, NIKAIDO H. PhoPQ-mediated regulation produces a more robust permeability barrier in the outer membrane of Salmonella enterica serovar Typhimurium[J]. Journal of Bacteriology, 2007, 189(20): 7213-7222.
    [18] NILSSON C, SKOGLUND A, MORAN AP, ANNUK H, ENGSTRAND L, NORMARK S. Lipopolysaccharide diversity evolving in Helicobacter pylori communities through genetic modifications in fucosyltransferases[J]. PLoS One, 2008, 3(11): e3811.
    [19] LIMA S, GUO MS, CHABA R, GROSS CA, SAUER RT. Dual molecular signals mediate the bacterial response to outer-membrane stress[J]. Science, 2013, 340(6134): 837-841.
    [20] NIKAIDO H, VAARA M. Molecular basis of bacterial outer membrane permeability[J]. Microbiology and Molecular Biology Reviews, 1985, 49(1): 1-32.
    [21] MALDONADO RF, SÁ-CORREIA I, VALVANO MA. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection[J]. FEMS Microbiology Reviews, 2016, 40(4): 480-493.
    [22] WISEMAN B, NITHARWAL RG, WIDMALM G, HÖGBOM M. Structure of a full-length bacterial polysaccharide co-polymerase[J]. Nature Communications, 2021, 12: 369.
    [23] WOODWARD R, YI W, LI L, ZHAO GH, EGUCHI H, SRIDHAR PR, GUO HJ, SONG JK, MOTARI E, CAI L, KELLEHER P, LIU XW, HAN WQ, ZHANG WP, DING Y, LI M, WANG PG. In vitro bacterial polysaccharide biosynthesis: defining the functions of Wzy and Wzz[J]. Nature Chemical Biology, 2010, 6: 418-423.
    [24] ISLAM ST, LAM JS. Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway[J]. Canadian Journal of Microbiology, 2014, 60(11): 697-716.
    [25] TRENT MS, PABICH W, RAETZ CR, MILLER SI. A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella typhimurium[J]. Journal of Biological Chemistry, 2001, 276(12): 9083-9092.
    [26] VALVANO MA, MESSNER P, KOSMA P. Novel pathways for biosynthesis of nucleotide-activated glycero-manno-heptose precursors of bacterial glycoproteins and cell surface polysaccharides[J]. Microbiology, 2002, 148(Pt 7): 1979-1989.
    [27] SWEENEY RP, LOWARY TL. New insights into lipopolysaccharide assembly and export[J]. Current Opinion in Chemical Biology, 2019, 53: 37-43.
    [28] FINK JM, ZISSLER JF. Defects in motility and development of Myxococcus xanthus lipopolysaccharide mutants[J]. Journal of Bacteriology, 1989, 171(4): 2042-2048.
    [29] TOGUCHI A, SIANO M, BURKART M, HARSHEY RM. Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide[J]. Journal of Bacteriology, 2000, 182(22): 6308-6321.
    [30] 马鹏, 胡晓清, 陈久洲, 王小元. 大肠杆菌细胞外膜渗透性与脂多糖结构的关系[J]. 微生物学通报, 2011, 38(8): 1307-1315. MA P, HU XQ, CHEN JZ, WANG XY. The effect of the structure of lipopolysaccharide on the permeability of Escherichia coli cell membranes[J]. Microbiology China, 2011, 38(8): 1307-1315(in Chinese).
    [31] CHEN QW, QUAN H, YU YF, LIU DH, LI CY, CHU YF, GONG XW. EptA of Riemerella anatipestifer mediates phenotypes involved in colistin resistance and virulence[J]. Faseb Journal, 2023, 37(5): e22928.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

曹启予,高宇杰,张晓荟,陈歆丹,罗平,翟瑞东,韩先干,宋厚辉,程昌勇,于纪棉,韩月. 糖基转移酶WekM参与禽致病性大肠杆菌脂多糖合成和环境适应[J]. 微生物学报, 2024, 64(8): 2702-2712

复制
分享
文章指标
  • 点击次数:139
  • 下载次数: 380
  • HTML阅读次数: 309
  • 引用次数: 0
历史
  • 收稿日期:2024-01-06
  • 最后修改日期:2024-04-03
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码