转录组分析揭示盐酸克林霉素胁迫下嗜根考克氏菌DC2201的响应机制
作者:
基金项目:

国家自然科学基金(31960015);江西省自然科学基金(20192BAB204001)


Transcriptome analysis reveals the response mechanism of Kocuria rhizophila DC2201 to clindamycin hydrochloride
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 研究0.5倍最低抑菌浓度(minimal inhibitory concentration, MIC)的盐酸克林霉素胁迫下,嗜根考克氏菌DC2201的差异表达基因(differentially expressed genes, DEGs),揭示盐酸克林霉素胁迫下嗜根考克氏菌(Kocuria rhizophila) DC2201的响应机制。【方法】 以LB液体培养基培养的嗜根考克氏菌DC2201细胞为对照,采用Illumina Hiseq测序平台进行RNA-seq双端测序,分析0.5 MIC的盐酸克林霉素胁迫下嗜根考克氏菌的基因表达情况,并采用实时荧光定量PCR方法验证。【结果】 从盐酸克林霉素胁迫下的嗜根考克氏菌中共筛选到1 202个显著DEGs,其中显著上调表达基因604个,显著下调表达基因598个。经基因本体论(gene ontology, GO)注释,筛选到分子功能(molecular function, MF)、细胞组分(cellular component, CC)和生物学过程(biological process, BP) 3个一级分类指标,35个二级分类指标共1 041个显著DEGs。经京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes, KEGG)注释,筛选到与DNA修复途径相关的显著DEGs 16个,与核糖体合成途径相关的显著DEGs 43个,与ATP结合盒(ATP-binding cassette, ABC)转运蛋白相关的显著DEGs 28个,与戊糖磷酸途径、糖酵解、三羧酸(tricarboxylic acid, TCA)循环、淀粉与蔗糖、丙酮酸、丁酸等碳水化合物代谢相关的显著DEGs 77个,与肽聚糖合成相关的显著DEGs 5个。【结论】 盐酸克林霉素胁迫下,嗜根考克氏菌DC2201的响应机制是一个全局性反应机制,细菌通过增强多重耐药性(multidrug resistance, MDR)家族的主要促进者超家族(major facilitator superfamily, MFS)转运体的表达来增加对盐酸克林霉素的外排,通过增强DNA修复和RNA代谢途径,以保证基因组的稳定性和RNA的正常功能,通过增强核糖体合成途径来弥补盐酸克林霉素与自身50S核糖体结合后导致的蛋白质合成障碍,以提高蛋白质合成效率。与此同时,减少碳水化合物的吸收和转运,抑制自身的能量代谢途径,以减缓自身的生长速率而降低对能量的需求,相应地,细胞壁的稳定性也受到影响。

    Abstract:

    [Objective] To mine the differentially expressed genes (DEGs) of Kocuria rhizophila DC2201 exposed to clindamycin hydrochloride at 0.5 minimum inhibitory concentration (MIC) and reveal the response mechanism of Kocuria rhizophila DC2201 to clindamycin hydrochloride. [Methods] With the Kocuria rhizophila DC2201 cells cultured in LB liquid medium as the control, Illumina HiSeq platform was used for paired-end sequencing to determine the gene expression of Kocuria rhizophila DC2201 cells exposed to clindamycin hydrochloride at 0.5 MIC. Real-time fluorescence quantitative PCR was then conducted for validation. [Results] A total of 1 202 significantly DEGs were screened out from Kocuria rhizophila DC2201 under the stress of clindamycin hydrochloride, including 604 significantly up-regulated genes and 598 significantly down-regulated genes. After gene ontology (GO) annotation, 1 041 significantly DEGs were annotated into 35 GO terms of molecular function (MF), cell composition (CC), and biological process (BP). The Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis predicted 16 significantly DEGs related to DNA repair, 43 significantly DEGs related to ribosomal synthesis, 28 DEGs associated with ATP-binding cassette (ABC) transporters, 77 significantly DEGs associated with the pentose phosphate pathway, glycolysis, tricarboxylic acid (TCA) cycle, starch and sucrose, pyruvate, butyrate and other carbohydrate metabolisms, and 5 significantly DEGs related to peptidoglycan synthesis. [Conclusion] Kocuria rhizophila DC2201 exposed to clindamycin hydrochloride adopts a global response mechanism. It increases the efflux of clindamycin hydrochloride by up-regulating the gene expression of major facilitator superfamily (MFS) transporters in the multidrug resistance (MDR) family. By enhancing DNA repair and RNA metabolism pathways, the strain ensures the genomic stability and normal RNA function. In addition, it enhances the ribosome synthesis pathway to compensate for the protein synthesis barrier caused by the binding of clindamycin hydrochloride with the 50S ribosome. Furthermore, the strain reduces the absorption and transportation of carbohydrates to restrain the energy metabolisms pathways, thus slowing down the growth and reducing the energy demand. Correspondingly, the cell wall stability of Kocuria rhizophila DC2201 is also affected.

    参考文献
    [1] LAMBERT RJW, PEARSON J. Susceptibility testing: accurate and reproducible minimum inhibitory concentration (MIC) and non-inhibitory concentration (NIC) values[J]. Journal of Applied Microbiology, 2000, 88(5): 784-790.
    [2] BASU S, PAL A, DESAI PK. Quality control of culture media in a microbiology laboratory[J]. Indian Journal of Medical Microbiology, 2005, 23(3): 159-163.
    [3] LI WJ, ZHANG YQ, SCHUMANN P, CHEN HH, HOZZEIN WN, TIAN XP, XU LH, JIANG CL. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(4): 733-737.
    [4] PARK EJ, KIM MS, ROH SW, JUNG MJ, BAE JW. Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(4): 914-918.
    [5] ZHOU GL, LUO XS, TANG YL, ZHANG L, YANG Q, QIU YJ, FANG CX. Kocuria flava sp. nov. and Kocuria turfanensis sp. nov., airborne actinobacteria isolated from Xinjiang, China[J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(6): 1304-1307.
    [6] TVRZOVÁ L, SCHUMANN P, SEDLÁČEK I, PÁČOVÁ Z, SPRÖER C, VERBARG S, KROPPENSTEDT RM. Reclassification of strain CCM 132, previously classified as Kocuria varians, as Kocuria carniphila sp. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 139-142.
    [7] CHATTOPADHYAY MK, JAGANNADHAM MV, VAIRAMANI M, SHIVAJI S. Carotenoid pigments of an Antarctic psychrotrophic bacterium Micrococcus roseus: temperature dependent biosynthesis, structure, and interaction with synthetic membranes[J]. Biochemical and Biophysical Research Communications, 1997, 239(1): 85-90.
    [8] KARN SK, CHAKRABARTI SK, REDDY MS. Degradation of pentachlorophenol by Kocuria sp. CL2 isolated from secondary sludge of pulp and paper mill[J]. Biodegradation, 2011, 22(1): 63-69.
    [9] FUJITA K, HAGISHITA T, KURITA S, KAWAKURA Y, KOBAYASHI Y, MATSUYAMA A, IWAHASHI H. The cell structural properties of Kocuria rhizophila for aliphatic alcohol exposure[J]. Enzyme and Microbial Technology, 2006, 39(3): 511-518.
    [10] TAKARADA H, SEKINE M, KOSUGI H, MATSUO Y, FUJISAWA T, OMATA S, KISHI E, SHIMIZU A, TSUKATANI N, TANIKAWA S, FUJITA N, HARAYAMA S. Complete genome sequence of the soil actinomycete Kocuria rhizophila[J]. Journal of Bacteriology, 2008, 190(12): 4139-4146.
    [11] SPÍZEK J, REZANKA T. Lincomycin, clindamycin and their applications[J]. Applied Microbiology and Biotechnology, 2004, 64(4): 455-464.
    [12] 李舜岩, 李由然, 石贵阳. 地衣芽孢杆菌9945a转运蛋白YdgF1的功能鉴定[J]. 微生物学报, 2023, 63(4): 1618-1629. LI SY, LI YR, SHI GY. Functional characterization of the transporter YgdF1 in Bacillus licheniformis 9945a[J]. Acta Microbiologica Sinica, 2023, 63(4): 1618-1629(in Chinese).
    [13] 杨秋玲, 王翔, 王志宏, 黄韬, 彭密军, 宁礼信. 外界因素和杜仲叶提取物对双乙酸钠的抑菌活性影响[J]. 食品工业科技, 2021, 42(2): 105-111, 118. YANG QL, WANG X, WANG ZH, HUANG T, PENG MJ, NING LX. Effects of external factors and Eucommia ulmoides leaves extracts on antibacterial activity of SDA[J]. Science and Technology of Food Industry, 2021, 42(2): 105-111, 118(in Chinese).
    [14] 由凤鸣, 胡荣, 肖冲, 侯天将, 杨露. 麻黄附子细辛汤联合抗生素的体外抗肺炎链球菌作用研究[J]. 世界中医药, 2015, 10(6): 891-894, 899. YOU FM, HU R, XIAO C, HOU TJ, YANG L. Research on the synergistic effect of Mahuang Fuzi Xixin decoction combined with antibiotics on Streptococcus pneumoniae[J]. World Chinese Medicine, 2015, 10(6): 891-894, 899(in Chinese).
    [15] 全国细菌耐药监测学术委员会. 全国细菌耐药监测网技术方案(2020年版)[J]. 中国感染与化疗杂志, 2020, 20(5): 560-564. Academic committee of China antimicrobial resistance surveillance system. Technical programme of China antimicrobial resistance surveillance system, 2020 edition[J]. Chinese Journal of Infection and Chemotherapy, 2020, 20(5): 560-564(in Chinese).
    [16] OGURA T, HIRAGA S. Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(15): 4784-4788.
    [17] AIZENMAN E, ENGELBERG-KULKA H, GLASER G. An Escherichia coli chromosomal "addiction module" regulated by guanosine [corrected] 3',5'-bispyrophosphate: a model for programmed bacterial cell death[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(12): 6059-6063.
    [18] WANG DL, NING Q, DENG ZQ, ZHANG M, YOU J. Role of environmental stresses in elevating resistance mutations in bacteria: phenomena and mechanisms[J]. Environmental Pollution, 2022, 307: 119603.
    [19] ROEMHILD R, BOLLENBACH T, ANDERSSON DI. The physiology and genetics of bacterial responses to antibiotic combinations[J]. Nature Reviews Microbiology, 2022, 20: 478-490.
    [20] FANG H, TIAN LY, YE N, ZHANG S. Alizarin enhancement of the abundance of ARGs and impacts on the microbial community in water[J]. Water Science and Technology, 2023, 87(9): 2250-2264.
    [21] WU JY, LIU CC, WANG R, YAN ST, CHEN BL, ZHU XY. Enhanced bacterial adhesion force by rifampicin resistance promotes microbial colonization on PE plastic compared to non-resistant biofilm formation[J]. Water Research, 2023, 242: 120319.
    [22] COPPOLA D, BUONOCORE C, PALISSE M, TEDESCO P, de PASCALE D. Exploring oceans for curative compounds: potential new antimicrobial and anti-virulence molecules against Pseudomonas aeruginosa[J]. Marine Drugs, 2022, 21(1): 9.
    [23] FANG CL, ZHANG Y. Bacterial MerR family transcription regulators: activation by distortion[J]. Acta Biochim??卡??????副?乨??剩?????呮桩散?戬愠挲琰攲爲椬愠氵?琨漱砩椺渠′刵攭氳??搼楢獲瀾汛愲礴獝?捂潁摋潓湈?獋灁攬挠楚晁楍捂?捅氠敄慂瘮愠杁敬?潯晳?浥割乩?猠?楯湮?瑲桯敬?牯楦戠潭獥潴浡慬氭???獰楯瑮敳孩?嵥???敡汮汳???ばぴ?????㈠???????????ど??扢牡?孴??嵩????丮??奯??偮佡????丠佂????????乬匠????剩???佹丬???娲丰夬???‵倨愶爩??琱漶砷椳渭?收游挴漮搼敢摲 ̄扛礲‵瑝栠敚?扁牎潇愠摒?栠潁獂瑄?牌愭湍杏敔?灁汌愠獈洬椠摚?剕???椠獇?慏渠?楊測栠楚扈楅瑎潇爠?潔昬??楁??猠捙桔攬爠楚捈桁楎慇?捚潌氬椠??楎??杌礬爠慘獕攠孔?崠???潎汇攠捊畑氮愠牁??楯捶牥潬戠楍潆汓漭杍祄???ひち???????????????????扬牯?孳??崲′???噳?乡?????呤?剴剥奲?????却???唠剴佨?????偳畵牰椾昫椼振慳瑵楰漾渠?潲晡?瑳桬敯?剡整汩??愠湣摯?剰敬汥??灴牯漠瑮敯楲湦獬?潸晡??楮??獦捦桬敵牸楛捊桝椮愠?捲潯汮楴??楲???剮攠汍??扲楯湢摩獯?瑯潧?刬攠氲?′愰測搠?琱漺?爹椵戵漮猼潢浲放獛嬲?嵝???漠畄牊測愠汗?潎晇??慘挬琠敎牅楕潂汅潒杇祅??休?????ㄠ???????水?ぐく?㈠?き???扉牄?孏??崠???刬?卌呕?乓卉?乂?匮?????????卧?乥????偸???剭印?为??????剴??卥????剮散汴???愠?杮汤漠扲慥汧?楬湡桴楩扯楮瑛潊牝?漠晎?瑴牵慲湥猠汒慥瑶楩潥湷??楍獩?慲捯瑢楩癯慬瑯敧摹?搠甲爰椱游本?渱甶琨爹椩琺椠漵渲愳氭‵猳琹爮攼獢獲嬾?崲??倠片潒捋敏敖摉楃渠杓猬?潂晒?瑗桎攠?么愬琠楓潋湕慒汒??挠慒摁攮洠祒?潧晵?卡捴楩敯湮挠敯獦?潢晡?瑴桥敲?啡湬椠瑤敲摵?匠瑥慸瑰敯獲?漠晳??浴敥牭楳捛慊??㈠きど??????????????㈠?????????戠牂?孯??嵧?氠敒???婥?即??氲攰‰?伬?娶?伨唴??????中丷?????? ̄卛琲爸畝挠瑆畒牏敍?獅瀠敊捃椬映楖捅?湄畉捎汅攠慇獌攮?慄捎瑁椠癬楥瑳楩敯獮?潲晥??楧?偩祴物潯据漠换捹甠獴??椠???楴?慲扩祡獬猠楲??楡??删乥慮獺敹????孵?嵍???漮甠牊湯慵汲?潡晬??慦挠瑂敩牯楬潯汧潩杣祡??至と?ね??????ㄠ???″???????????戵爱?嬴??崵??????乢卲 ̄????????瑄牏慖渦獁灡潣牵瑴敥爻猠??映爦漣洳‵洲椻捉牌潈漦牁条慣湵楴獥活獎?瑊漮?浃慯湮学?嵲???湩湯畮慡汬?剣敨癡楮敧睥?漠景??敄汎汁??楥潰污潩杲礠???????????????????扩牧?孥?づ嵤?剢?匠?低乁?佢????卮??啊?娮?????丠潌瑥?橴略獲瑳?琠爲愰渲猰瀬漠爵琹攴爨猱??愺氠琳攰爳渲愭琳椰瘴攴?昼畢湲挾瑛椳漰湝猠?潓晐?????瑌爠慒測猠灒潏牔瑈敗牅獌?椠湄??椠??慌捄楁汎氭畁獒???楁??椬?獁畎打瑅楌汍楉獎??楃??慗湁摒??楃??椠獃瑈故牁楄慌?洠潊湐漬挠祓瑁潍材敓湏敎猠??椬?孌?嵎???楌挠牔漬漠版杁慒湒楉獓洠獐??㈠え??????ㄠ???ㄠ????扩牮?嬠??嵤??乨?割??乴???????副呮?乯???????噣????剡佬?????佮?????奬?????吠?佩刾久味佣乨??????敡琠慣汯?楩漼港獩 ̄椠湥?扤楯潮汵潣杬楥捡慳汥?捉慉瑉慛汊祝献椠獐??晣牥潥浤?敮湧穳礠浯敦?摴慨瑥愠扎慡獴敩獯?瑡潬?杁散湡敤牥慭汹?灯牦椠湓捣楩灥汮散獥孳?嵯???潨略爠湕慮汩?潥晤??楴潡汴潥杳椠捯慦氠??湥潲物杣慡測椠挱??样攬洠椹猴琨爱礩??㈱?????????????㈱そ????????扖爠?孖?㈠嵈…?創佭??坂?????????????″?唭刵????乯?????佡即呥?剛?????呡?卵????剥??????楍??祥捣潵扬慡捲琠敃牥楬畬洠?獩浯敬杯浧慹琬椠猲??椲??倳栺漠唳?瀴爭漳琷收椮渼獢?栾慛瘳攲?漠癋敒牏汋慁灎瀠楈湅本?晓畔湁捎瑄楁潌渠獒?椠湓?灕桐潐獈灁桕慇琠敇?猠楄李湁愠汧楬湹杣?慳湹摬?慳牥敳?敩獮猠整湨瑥椠慢污孳?崠???物潳湩瑯楮攠牲獥?楡湩??楯捦爠潄扎楁潛汊潝朮礠???っ???????㈠?????扡牬?嬠??崹??传?刲?吨娱?????????乢?夾?倳??倠佒剙呚?剉???????啇呕??剁删?娬????奃?乍??????卋??坏?剅婖??????坣奏?剰?????????????却???佄???乲卥??????湡瑴楩扯楮漠瑡楮捤?敳晴晲楡据慤挠祡?楮獥?汬楩湮歧攠摴?瑲潯?执慨挠瑴敷牯椠慡汬?捥敲汮污畴汩慶牥?牄敎獁瀠楢物慮瑤楩潮湧嬠?嵥??偡牮潩捳敭敳摛楊湝朮猠?潯晵?瑮桡敬?乯慦琠楂潩湯慬汯??捣慡摬攠浃票?潭晩?却捲楹攬渠挲攰猱?漬映′琸根攨?唲温椺琠攲搸?匴琶愭琲攸猸‵漵昮??浲放牛椳挴慝???い?????ㄠ??㈠???????????????扖牌?孖??嵙???乌?堠?????乒???儀????????倀?一??堀堀???氀甀挀琀甀愀琀椀漀渀?漀昀?洀甀氀琀椀瀀氀攀?洀攀琀愀戀漀氀椀挀?瀀愀琀栀眀愀礀猀?椀猀?爀攀焀甀椀爀攀搀?昀漀爀??椀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀??椀??椀渀?爀攀猀瀀漀渀猀攀?琀漀?挀栀氀漀爀琀攀琀爀愀挀礀挀氀椀渀攀?猀琀爀攀猀猀嬀?崀???漀氀攀挀甀氀愀爀??椀漀匀礀猀琀攀洀猀??? ????? ?????? ??? ???戀爀?嬀??崀?????倀????匀匀?一?????吀?吀唀?匀???一???唀?嘀??倀伀??刀?????????一?????倀?唀?匀?一??吀??吀栀攀?琀爀愀渀猀挀爀椀瀀琀漀洀椀挀?猀椀最渀愀琀甀爀攀?漀昀?琀椀最攀挀礀挀氀椀渀攀?椀渀??椀??挀椀渀攀琀漀戀愀挀琀攀爀?戀愀甀洀愀渀渀椀椀??椀?嬀?崀???爀漀渀琀椀攀爀猀?椀渀??椀挀爀漀戀椀漀氀漀最礀??? ? ??????????????戀爀?嬀??崀???伀夀???????刀?一??匀??倀????????夀??????唀???吀???倀栀漀猀瀀栀漀?一?愀挀攀琀礀氀?洀甀爀愀洀礀氀?瀀攀渀琀愀瀀攀瀀琀椀搀攀?琀爀愀渀猀氀漀挀愀猀攀?昀爀漀洀??椀??猀挀栀攀爀椀挀栀椀愀?挀漀氀椀??椀???挀愀琀愀氀礀琀椀挀?爀漀氀攀?漀昀?挀漀渀猀攀爀瘀攀搀?愀猀瀀愀爀琀椀挀?愀挀椀搀?爀攀猀椀搀甀攀猀嬀?崀???漀甀爀渀愀氀?漀昀??愀挀琀攀爀椀漀氀漀最礀???  ??????????????????????戀爀?嬀??崀?刀?伀匀?刀?匀????夀???唀甀洀氀???倀????伀愀挀甀琀攀?倀?娀???刀???愀挀甀琀攀????吀???伀一娀???娀?儀唀??一琀椀氀搀攀?伀一?娀?一????一????????刀?一??????????一吀????????栀愀爀愀挀琀攀爀椀稀愀琀椀漀渀?漀昀?匀?伀??????愀?搀?愀氀愀渀礀氀?搀?愀氀愀渀椀渀攀?挀愀爀戀漀砀礀瀀攀瀀琀椀搀愀猀攀?椀渀瘀漀氀瘀攀搀?椀渀?猀瀀漀爀攀?挀攀氀氀?眀愀氀氀?洀愀琀甀爀愀琀椀漀渀??爀攀猀椀猀琀愀渀挀攀??愀渀搀?最攀爀洀椀渀愀琀椀漀渀?椀渀??椀?匀琀爀攀瀀琀漀洀礀挀攀猀?挀漀攀氀椀挀漀氀漀爀??椀?嬀?崀??匀挀椀攀渀琀椀昀椀挀?刀攀瀀漀爀琀猀??? ??????????????戀爀?嬀??崀?匀?唀嘀?????????刀??????吀?刀刀???????夀???????????刀???刀?倀??吀栀攀?瀀攀渀椀挀椀氀氀椀渀?戀椀渀搀椀渀最?瀀爀漀琀攀椀渀猀??猀琀爀甀挀琀甀爀攀?愀渀搀?爀漀氀攀?椀渀?瀀攀瀀琀椀搀漀最氀礀挀愀渀?戀椀漀猀礀渀琀栀攀猀椀猀嬀?崀?????匀??椀挀爀漀戀椀漀氀漀最礀?刀攀瘀椀攀眀猀???  ??????????????????
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张小梅,彭萱,龙雨欣,倪海燕,邹龙,龙中儿. 转录组分析揭示盐酸克林霉素胁迫下嗜根考克氏菌DC2201的响应机制[J]. 微生物学报, 2024, 64(8): 2731-2751

复制
分享
文章指标
  • 点击次数:178
  • 下载次数: 467
  • HTML阅读次数: 321
  • 引用次数: 0
历史
  • 收稿日期:2024-01-08
  • 最后修改日期:2024-03-27
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码