源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用
作者:
基金项目:

福建省自然科学基金(2023J01771);福建省高校产学合作项目(2023N5008)


The antimicrobial peptide BCE3 isolated from fermented Penaeus vannamei: inhibition mechanism on Bacillus cereus and application in rice
Author:
  • TAO Weihong

    TAO Weihong

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIN Rong

    LIN Rong

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center of Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIANG Duo

    LIANG Duo

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center of Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • YANG Shen

    YANG Shen

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center of Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Ritian

    JIN Ritian

    College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China;Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China;Collaborative Innovation Center of Key Technologies of Deep Processing of Marine Food, Dalian Polytechnic University, Dalian 116034, Liaoning, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [18]
  • | | |
  • 文章评论
    摘要:

    【目的】 利用枯草芽孢杆菌(Bacillus subtilis)发酵凡纳滨对虾(Penaeus vannamei)加工废弃物,并从发酵液中鉴定出一种新型抗菌肽(命名为BCE3),探究其对蜡样芽孢杆菌(Bacillus cereus)的抑菌作用和机制。【方法】 通过超高效液相色谱-质谱联用技术(ultra performance liquid chromatography tandem mass spectrometry, UPLC-MS)对发酵液中的小分子多肽序列进行鉴定,并进一步通过生物信息学筛选潜在抗菌肽;通过微量稀释法和平板涂布法分析BCE3对蜡样芽孢杆菌的最低抑菌浓度(minimum inhibitory concentration, MIC)、最低杀菌浓度(minimum bactericidal concentration, MBC)和时间-杀伤曲线(time-kill curve);通过碱性磷酸酶(alkaline phosphatase, AKP)泄漏、碘化丙啶(propidium iodide, PI)染色分析、核酸和蛋白质泄漏实验以及流式细胞术分析BCE3对细菌细胞壁和细胞膜的影响;通过DNA凝胶阻滞实验、与EB竞争性结合的荧光光谱实验以及分子对接模拟实验探究BCE3对细菌DNA的影响;通过菌落计数法探究BCE3在米饭中的抑菌作用。【结果】 利用生物信息学筛选出潜在抗菌肽BCE3,其对蜡样芽孢杆菌的MIC和MBC分别为62.5 μg/mL和125.0 μg/mL,其可在3 h内使细菌数减少86.0% (62.5 μg/mL),与乳酸链球菌素(nisin)相比具有更好的杀菌效果。BCE3破坏细菌细胞壁和细胞膜,导致细胞胞内核酸和蛋白质泄漏,并与细菌DNA结合并导致细菌死亡。另外,BCE3 (125.0 μg/mL)对米饭中蜡样芽孢杆菌的生长具有明显的抑制作用。【结论】 BCE3能够改变蜡样芽孢杆菌细胞膜的通透性,同时与细菌的DNA结合导致细菌死亡。这些发现为BCE3应用于蜡样芽孢杆菌的防治提供了理论基础。

    Abstract:

    [Objective] To study the inhibitory effect and mechanism of a novel antimicrobial peptide (BCE3) isolated from Penaeus vannamei processing waste fermented with Bacillus subtilis against Bacillus cereus. [Methods] The small peptide sequences in the fermentation broth were identified by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS), and the potential antimicrobial peptides were screened by bioinformatics. The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill curve of BCE3 against B. cereus were determined by the microdilution method and plate colony counting method. Then, the alkaline phosphatase release assay, propidium iodide (PI) staining, nucleic acid and protein leakage assays, and flow cytometry were employed to examine the effects of BCE3 on the cell wall and cell membrane of B. cereus. The effect of BCE3 on bacterial DNA was explored by the gel retardation assay, fluorescence spectroscopy, and molecular docking. Finally, the antimicrobial effects of BCE3 in rice were evaluated by the colony counting method. [Results] The potential antimicrobial peptide BCE3 screened out showed the MIC of 62.5 μg/mL and MBC of 125.0 μg/mL against B. cereus. The time-kill curve revealed that BCE3 reduced the bacterial count by 86.0% within 3 h (62.5 μg/mL), outperforming nisin. BCE3 caused damage to the bacterial cell wall and membrane, leading to the leakage of cell contents. Moreover, it can bind with DNA to kill the bacteria. In addition, BCE3 (125.0 μg/mL) exerted a significant inhibitory effect on the growth of B. cereus in rice. [Conclusion] BCE3 inhibits B. cereus by altering the permeability of the cell membrane and binding to DNA, thus leading to bacterial death. These findings provide a theoretical basis for application of BCE3 in the control of B. cereus.

    参考文献
    [1] 赵驰, 董玲, 张凤菊, 陈善波, 胡文, 赵跃军, 黄志标, 朱永清, 李治华. 青花椒精油抑制蜡样芽孢杆菌的活性与机理[J]. 食品科学, 2022, 43(17): 64-73. ZHAO C, DONG L, ZHANG FJ, CHEN SB, HU W, ZHAO YJ, HUANG ZB, ZHU YQ, LI ZH. Antibacterial activity and mechanism of green Huajiao (Zanthoxylum schinifolium) essential oil against Bacillus cereus[J]. Food Science, 2022, 43(17): 64-73(in Chinese).
    [2] NAVANEETHAN Y, EFFARIZAH ME. Post-cooking growth and survival of Bacillus cereus spores in rice and their enzymatic activities leading to food spoilage potential[J]. Foods, 2023, 12(3): 626.
    [3] JOVANOVIC J, ORNELIS VFM, MADDER A, RAJKOVIC A. Bacillus cereus food intoxication and toxicoinfection[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(4): 3719-3761.
    [4] RODRIGO D, ROSELL CM, MARTINEZ A. Risk of Bacillus cereus in relation to rice and derivatives[J]. Foods, 2021, 10(2): 302.
    [5] DEHGHAN P, MOHAMMADI A, MOHAMMADZADEH-AGHDASH H, DOLATABADI JEN. Pharmacokinetic and toxicological aspects of potassium sorbate food additive and its constituents[J]. Trends in Food Science & Technology, 2018, 80: 123-130.
    [6] DEL OLMO A, CALZADA J, NUÑEZ M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: uses, exposure, and controversy[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(14): 3084-3103.
    [7] WANG Q, XU YZ, HU JH. Intracellular mechanism of antimicrobial peptide HJH-3 against Salmonella pullorum[J]. RSC Advances, 2022, 12(23): 14485-14491.
    [8] 范学楠, 林蓉, 金日天, 梁铎, 邱绪健, 杨燊. 一种源自人α-2-巨球蛋白的抗菌肽A2M3及其对金黄色葡萄球菌的抑菌机制[J]. 微生物学报, 2024, 64(3): 938-952. FAN XN, LIN R, JIN RT, LIANG D, QIU XJ, YANG S. A novel antimicrobial peptide A2M3 derived from human alpha-2-macroglobulin inhibits Staphylococcus aureus[J]. Acta Microbiologica Sinica, 2024, 64(3): 938-952(in Chinese).
    [9] 农业农村部渔业渔政管理局, 全国水产技术推广总站, 中国水产学会编制. 中国渔业统计年鉴-2023[M]. 北京: 中国农业出版社, 2023. Bureau of Fisheries and Fisheries Administration, Ministry of Agriculture and Rural Affairs, National Aquatic Technology Extension Station, China Fisheries Association. China Fisheries Statistics Yearbook-2023[M]. Beijing: China Agriculture Press, 2023(in Chinese).
    [10] 徐文思, 张梦媛, 李柏花, 杨祺福, 危纳强, 杨品红, 周顺祥. 虾加工副产物蛋白肽提制及其生物活性研究进展[J]. 食品工业科技, 2021, 42(17): 432-438. XU WS, ZHANG MY, LI BH, YANG QF, WEI NQ, YANG PH, ZHOU SX. Research progress of protein polypeptides extraction and bioactivities from shrimp processing by-products[J]. Science and Technology of Food Industry, 2021, 42(17): 432-438(in Chinese).
    [11] 李雨霖, 余炼, 倪婕, 姜毅, 江虹锐, 刘小玲. 对虾加工下脚料的综合提取技术研究进展[J]. 食品工业科技, 2020, 41(23): 337-345. LI YL, YU L, NI J, JIANG Y, JIANG HR, LIU XL. Research progress on comprehensive extraction technology of prawn processing scraps[J]. Science and Technology of Food Industry, 2020, 41(23): 337-345(in Chinese).
    [12] ZHOU J, HAN QY, KOYAMA T, ISHIZAKI S. Preparation, purification and characterization of antibacterial and ACE inhibitory peptides from head protein hydrolysate of kuruma shrimp, Marsupenaeus japonicus[J]. Molecules, 2023, 28(2): 894.
    [13] HU Y, LING YX, QIN ZY, HUANG JM, JIAN LY, REN DF. Isolation, identification, and synergistic mechanism of a novel antimicrobial peptide and phenolic compound from fermented walnut meal and their application in Rosa roxbughii Tratt spoilage fungus[J]. Food Chemistry, 2024, 433: 137333.
    [14] CHENG AC, LIN HL, SHIU YL, TYAN YC, LIU CH. Isolation and characterization of antimicrobial peptides derived from Bacillus subtilis E20-fermented soybean meal and its use for preventing Vibrio infection in shrimp aquaculture[J]. Fish & Shellfish Immunology, 2017, 67: 270-279.
    [15] 王铭遥, 郑明静, 任中阳, 石林凡, 邓尚贵, 杨燊. 凡纳滨对虾抗菌肽的筛选及与DNA的结合机制[J]. 中国食品学报, 2023, 23(7): 140-151. WANG MY, ZHENG MJ, REN ZY, SHI LF, DENG SG, YANG S. Antimicrobial peptides screened from Penaeus vannamei shrimp and investigation of their DNA binding mechanism[J]. Journal of Chinese Institute of Food Science and Technology, 2023, 23(7): 140-151(in Chinese).
    [16] HANCOCK REW, SAHL HG. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies[J]. Nature Biotechnology, 2006, 24: 1551-1557.
    [17] YANG S, HUANG H, WANG F, AWEYA JJ, ZHENG ZH, ZHANG YL. Prediction and characterization of a novel hemocyanin-derived antimicrobial peptide from shrimp Litopenaeus vannamei[J]. Amino Acids, 2018, 50(8): 995-1005.
    [18] LI YM, WANG M, LI YQ, HONG B, KANG D, MA Y, WANG JF. Two novel antimicrobial peptides against vegetative cells, spores and biofilm of Bacillus cereus[J]. Food Control, 2023, 149: 109688.
    [19] HUANG ZY, DONG WM, FAN JP, TIAN Y, HUANG AX, WANG XF. Tandem mass tag-based proteomics technology provides insights into multi-targeted mechanism of peptide MOp2 from Moringa oleifera seeds against Staphylococcus aureus[J]. LWT, 2023, 178: 114617.
    [20] ZHU CL, BAI YL, ZHAO XQ, LIU SQ, XIA XJ, ZHANG SP, WANG YM, ZHANG HH, XU YZ, CHEN SJ, JIANG JQ, WU YD, WU XL, ZHANG GP, ZHANG XM, HU JH, WANG L, ZHAO YY, BAI YY. Antimicrobial peptide MPX with broad-spectrum bactericidal activity promotes proper abscess formation and relieves skin inflammation[J]. Probiotics and Antimicrobial Proteins, 2023, 15(6): 1608-1625.
    [21] LI ZL, WU HY, LIU JN, HAO HS, BI JR, HOU HM, ZHANG GL. Synergistic effects of benzyl isothiocyanate and resveratrol against Listeria monocytogenes and their application in chicken meat preservation[J]. Food Chemistry, 2023, 419: 135984.
    [22] NING YW, MA MG, ZHANG YJ, ZHANG DC, HOU LL, YANG K, FU YN, WANG ZX, JIA YM. Antibacterial mechanism of sucrose laurate against Bacillus cereus by attacking multiple targets and its application in milk beverage[J]. Food Research International, 2022, 154: 111018.
    [23] RAVICHANDIRAN P, SHEET S, PREMNATH D, KIM AR, YOO DJ. 1,4-naphthoquinone analogues: potent antibacterial agents and mode of action evaluation[J]. Molecules, 2019, 24(7): 1437.
    [24] YANG S, LI J, AWEYA JJ, YUAN ZJ, WENG WY, ZHANG YL, LIU GM. Antimicrobial mechanism of Larimichthys crocea whey acidic protein-derived peptide (LCWAP) against Staphylococcus aureus and its application in milk[J]. International Journal of Food Microbiology, 2020, 335: 108891.
    [25] 杨昆, 王欢, 高洁, 李钰芳, 赵琼, 施娅楠, 黄艾祥. 抗菌肽BCp12对大肠杆菌壁膜及DNA损伤的作用机制[J]. 食品科学, 2021, 42(19): 114-121. YANG K, WANG H, GAO J, LI YF, ZHAO Q, SHI YN, HUANG AX. Mechanism by which antimicrobial peptide BCp12 acts on the cell wall and membrane of Escherichia coli cells and induces DNA damage[J]. Food Science, 2021, 42(19): 114-121(in Chinese).
    [26] CUI HY, YANG M, CHEN XC, LI CZ, LIN L. Mechanism of eugenol inhibiting the growth of vegetative cells and spores of Bacillus cereus and its application in rice cakes[J]. Food Bioscience, 2023, 54: 102930.
    [27] OUYANG QL, DUAN XF, LI L, TAO NG. Cinnamaldehyde exerts its antifungal activity by disrupting the cell wall integrity of Geotrichum citri-aurantii[J]. Frontiers in Microbiology, 2019, 10: 55.
    [28] FAN L, WEI YY, CHEN Y, JIANG S, XU F, ZHANG CD, WANG HF, SHAO XF. Epinecidin-1, a marine antifungal peptide, inhibits Botrytis cinerea and delays gray mold in postharvest peaches[J]. Food Chemistry, 2023, 403: 134419.
    [29] 耿飞, 王伟, 周涛. 乌梅提取液对李斯特菌的抑菌机理[J]. 食品科学, 2011, 32(15): 88-93. GENG F, WANG W, ZHOU T. Antibacterial mechanisms of fructus mume extract against Listeria innocua[J]. Food Science, 2011, 32(15): 88-93(in Chinese).
    [30] WU YP, BAI JR, ZHONG K, HUANG YN, GAO H. A dual antibacterial mechanism involved in membrane disruption and DNA binding of 2R,3R-dihydromyricetin from pine needles of Cedrus deodara against Staphylococcus aureus[J]. Food Chemistry, 2017, 218: 463-470.
    [31] XUAN JQ, FENG WG, WANG JY, WANG RC, ZHANG BW, BO LT, CHEN ZS, YANG H, SUN LM. Antimicrobial peptides for combating drug-resistant bacterirnal of Molecular Sciences, 2022, 23(9): 4611.3, 68: 100954.
    [32] BROWN S, SANTA MARIA JP Jr., WALKER S. Wall teichoic acids of gram-positive bacteria[J]. Annual Review of Microbiology, 2013, 67: 313-336.
    [33] KOEHBACH J, CRAIK DJ. The vast structural diversity of antimicrobial peptides[J]. Trends in Pharmacological Sciences, 2019, 40(7): 517-528.
    [34] 周峰, 刘燕, 马永贵, 黄原. 真核翻译延伸因子1A蛋白家族功能位点的进化踪迹分析[J]. 中国生物化学与分子生物学报, 2013, 29(8): 773-782. ZHOU F, LIU Y, MA YG, HUANG Y. Evolutionary trace analysis of functional sites of the eEF1A family[J]. Chinese Journal of Biochemistry and Molecular Biology, 2013, 29(8): 773-782(in Chinese).
    [35] HAMEY JJ, WILKINS MR. Methylation of elongation factor 1A: where, who, and why?[J]. Trends in Biochemical Sciences, 2018, 43(3): 211-223.
    [36] WANG L, LIU Y, WANG WN, MAI WJ, XIN Y, ZHOU J, HE WY, WANG AL, SUN RY. Molecular characterization and expression analysis of elongation factors 1A and 2 from the Pacific white shrimp, Litopenaeus vannamei[J]. Molecular Biology Reports, 2011, 38(3): 2167-2178.
    [37] AGRILLO B, PORRITIELLO A, GRATINO L, BALESTRIERI M, PROROGA YT, MANCUSI A, COZZI L, VICENZA T, DARDANO P, MIRANDA B, ESCRIBÁ PV, GOGLIETTINO M, PALMIERI G. Antimicrobial activity, membrane interaction and structural features of short arginine-rich antimicrobial peptides[J]. Frontiers in Microbiology, 2023, 14: 1244325.
    [38] YANG CY, SU ZW, LI ZF, YAO R, LIU W, YIN H. Harvest of nisin from fermentation broth using foam separation with the assistance of ultrasonic treatment: foam property evaluation and antimicrobial activity retention[J]. Separation and Purification Technology, 2023, 311: 123253.
    [39] ZHAO CF, WU LN, WANG XW, WENG SH, RUAN ZP, LIU QC, LIN LQ, LIN XH. Quaternary ammonium carbon quantum dots as an antimicrobial agent against Gram-positive bacteria for the treatment of MRSA-infected pneumonia in mice[J]. Carbon, 2020, 163: 70-84.
    [40] CAVENEY NA, CABALLERO G, VOEDTS H, NICIFOROVIC A, WORRALL LJ, VUCKOVIC M, FONVIELLE M, HUGONNET JE, ARTHUR M, STRYNADKA NCJ. Structural insight into YcbB-mediated beta-lactam resistance in Escherichia coli[J]. Nature Communications, 2019, 10: 1849.
    [41] LI LL, ZHOU P, WANG YD, PAN Y, CHEN M, TIAN Y, ZHOU H, YANG BR, MENG HC, ZHENG J. Antimicrobial activity of cyanidin-3-O-glucoside-lauric acid ester against Staphylococcus aureus and Escherichia coli[J]. Food Chemistry, 2022, 383: 132410.
    [42] ZHAO GP, LI YQ, SUN GJ, MO HZ. Antibacterial actions of glycinin basic peptide against Escherichia coli[J]. Journal of Agricultural and Food Chemistry, 2017, 65(25): 5173-5180.
    [43] OMIDBAKHSH AMIRI E, FARMANI J, RAFTANI AMIRI Z, DEHESTANI A, MOHSENI M. Antimicrobial activity, environmental sensitivity, mechanism of action, and food application of αs165−181 peptide[J]. International Journal of Food Microbiology, 2021, 358: 109403.
    [44] XU P, YUAN LB, WANG K, PAN BY, YE Y, LU K. Interaction of bifunctional peptide-carbazole complexes with DNA and antimicrobial activity[J]. International Journal of Biological Macromolecules, 2023, 237: 124070.
    [45] HSU CH, CHEN C, JOU ML, LEE AYL, LIN YC, YU YP, HUANG WT, WU SH. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA[J]. Nucleic Acids Research, 2005, 33(13): 4053-4064.
    [46] 陈旋, 李莉蓉. 抗菌肽P7抑制大肠杆菌的非膜作用机制[J]. 微生物学报, 2016, 56(11): 1737-1745. CHEN X, LI LR. Non-membrane mechanisms of antimicrobial peptide P7 against Escherichia coli[J]. Acta Microbiologica Sinica, 2016, 56(11): 1737-1745(in Chinese).
    [47] ZHANG ZS, ZHOU YC, ZHANG H, DU XY, CAO ZJ, WU Y, LIU CS, SUN Y. Antibacterial activity and mechanisms of TroHepc2-22, a derived peptide of hepcidin2 from golden pompano (Trachinotus ovatus)[J]. International Journal of Molecular Sciences, 2023, 24(11): 9251.
    [48] ZHANG JX, ISLAM MS, WANG JY, ZHAO Y, DONG WB. Isolation of potato endophytes and screening of Chaetomium globosum antimicrobial genes[J]. International Jou
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶玮红,林蓉,梁铎,杨燊,金日天. 源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用[J]. 微生物学报, 2024, 64(8): 2768-2783

复制
分享
文章指标
  • 点击次数:186
  • 下载次数: 494
  • HTML阅读次数: 336
  • 引用次数: 0
历史
  • 收稿日期:2024-01-12
  • 最后修改日期:2024-04-23
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码