濒危红树杂交种海南海桑的杂种劣势与其根际微生物的关联分析
作者:
基金项目:

海南省院士创新平台科研专项(YSPTZX2022011);粤西海洋中药及南药高值化开发利用创新团队(2021KCXTD039);云南省科技计划(202205AG070001)


Association between rhizosphere microbiome and hybrid weakness of the endangered mangrove hybrid plant Sonneratia×hainanensis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [57]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 研究杂交物种与亲本的形态生理特征差异,有助于理解物种的形成和进化机制。【方法】 植物学研究发现红树植物杯萼海桑(Sonneratia alba)和卵叶海桑(Sonneratia ovata)的自然杂交后代海南海桑(Sonneratia×hainanensis)表现出明显的生长劣势,本研究通过Illumina高通量测序技术,分析杂交后代与亲本根际微生物细菌与真菌群落差异,解析子代杂种劣势原因。【结果】 主坐标分析表明,虽然3种植物根际细菌和真菌群落不存在显著差异,但子代海南海桑根际群落结构和组成与生存力较强的母本差异较大,与父本更为相似。物种组成分析表明,细菌分布于76门320科388属,优势的假单胞菌门(Pseudomonadota)在3种植物根际相对丰度都超过41.00%,其中子代丰度为55.33%,高于其亲本。属水平上,脱硫球菌属(Desulfococcus, 3.23%)和红游动菌属(Rhodoplanes, 0.94%)等18个共有属占据测序总量15.77%,但在子代中,8个耐盐菌属的丰度明显降低,如深海弯曲杆菌属(Mariprofundus),可能影响到子代的盐耐受性。真菌群落中的子囊菌门(41.89%)与担子菌门(4.53%)为优势菌门,但在子代中的丰度均显著低于亲本,并且特征优势属也不同。原核生物分类单元功能注释(functional annotation of prokaryotic taxa, FAPROTAX)功能预测发现,红树林的原核微生物参与了硫代谢和氮代谢过程,但在细菌群落中,虽然子代的Shannon指数和Simpson指数均显著高于母本,但母本中一些与氮循环相关的高丰度类群并未在子代中得到继承,如B-42 (unclassified Trueperaceae)、Mariprofundus和氧化硫单胞菌属(Sulfurimonas)。土壤理化性质也显示,子代全氮和全磷的含量均显著低于其母本,一些与氮含量呈显著正相关的类群,如细菌中的Mariprofundus和B-42,真菌中的曲霉属(Aspergillus)和红酵母属(Rhodotorula),在子代中均有所减少。【结论】 本研究有助于从土壤根际微生物视角进一步了解海南海桑的杂种劣势原因。

    Abstract:

    [Objective] To study the morphological and physiological characteristics of hybrids compared with their parents and contribute to research on the mechanisms of speciation and evolution. [Methods] Sonneratia×hainanensis, a natural hybrid of the mangrove plants Sonneratia alba and S. ovata, usually presents hybrid weakness than its parents. In this study, Illumina high-throughput sequencing was employed to compare the rhizosphere microbiomes (including bacteria and fungi) between the hybrid and its parents, on the basis of which the reason for hybrid weakness was explored. [Results] The principal coordinate analysis (PCoA) revealed no significant difference in the rhizosphere bacterial or fungal community structure between the hybrid and its parents. However, the rhizosphere microbiome of the hybrid was different from that of the female parent S. alba with strong survival ability but similar to that of the male parent S. ovata. The rhizosphere bacteria belonged to 388 genera, 320 families of 76 phyla. The dominant phylum Pseudomonadota had the relative abundance above 41.00% in the rhizosphere of the three plant species, reaching 55.33% in the hybrid, which was higher than that in the parents. At the genus level, 18 common genera including Desulfococcus (3.23%) and Rhodoplanes (0.94%) in all the three mangrove plants showed the relative abundance of 15.77%. Among them, 8 salt-tolerant genera such as Mariprofundus showed decreased relative abundance in the hybrid, which may affect the salt tolerance. The rhizosphere fungi were dominated by Ascomycota and Basidiomycota with the relative abundance of 41.89% and 4.53%, respectively, which was significantly lower than that in the parents. Moreover, the predominant fungal genera were different in the three mangrove plants. Functional annotation of prokaryotic taxa (FAPROTAX) predicted that the mangrove prokaryotes were involved in sulfur metabolism and nitrogen metabolism. Although the hybrid had higher Shannon and Simpson indexes of rhizosphere bacteria than S. alba, some dominant taxa such as B-42 (unclassified Trueperaceae), Mariprofundus, and Sulfurimonas participating in the nitrogen cycle were not inherited by the hybrid. The soil total nitrogen (TN) and total phosphorus (TP) of the hybrid was significantly lower than that of S. alba. TN was significantly positively correlated with the relative abundance of Mariprofundus, B-42, Aspergillus, and Rhodotorula, which, however, demonstrated decreased relative abundance in the rhizosphere of the hybrid. [Conclusion] The results help to understand the mechanisms of hybrid weakness in Sonneratia×hainanensis.

    参考文献
    [1] RIESEBERG LH, RAYMOND O, ROSENTHAL DM, LAI Z, LIVINGSTONE K, NAKAZATO T, DURPHY JL, SCHWARZBACH AE, DONOVAN LA, LEXER C. Major ecological transitions in wild sunflowers facilitated by hybridization[J]. Science, 2003, 301(5637): 1211-1216.
    [2] RIESEBERG LH. Hybrid origins of plant species[J]. Annual Review of Ecology and Systematics, 1997, 28: 359-389.
    [3] RIESEBERG LH, WOOD TE, BAACK EJ. The nature of plant species[J]. Nature, 2006, 440: 524-527.
    [4] BASKETT ML, GOMULKIEWICZ R. Introgressive hybridization as a mechanism for species rescue[J]. Theoretical Ecology, 2011, 4(2): 223-239.
    [5] CHEN C, CHEN H, LIN YS, SHEN JB, SHAN JX, QI P, SHI M, ZHU MZ, HUANG XH, FENG Q, HAN B, JIANG LW, GAO JP, LIN HX. A two-locus interaction causes interspecific hybrid weakness in rice[J]. Nature Communications, 2014, 5: 3357.
    [6] NG WL, CHAN HT, SZMIDT AE. Molecular identification of natural mangrove hybrids of Rhizophora in Peninsular Malaysia[J]. Tree Genetics & Genomes, 2013, 9(5): 1151-1160.
    [7] WHITNEY KD, AHERN JR, CAMPBELL LG, ALBERT LP, KING MS. Patterns of hybridization in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2010, 12(3): 175-182.
    [8] MEERA SP, BHATTACHARYYA M, KUMAR A. Dynamics of mangrove functional traits under osmotic and oxidative stresses[J]. Plant Growth Regulation, 2023, 101(2): 285-306.
    [9] KUMAR A, ANJU T, ARCHA V, WARRIER VP, KUMAR S, GOUD GS, KASHYAP AK, SINGH S, KOMAL, SINGH P, KUMAR R, SHARMA S, RADHAKRISHNAN AM, RAMCHIARY N. Mangrove Forests: Distribution, Species Diversity, roles, Threats and Conservation Strategies[M]//SHARMA S, SINGH P ed. Wetlands Conservation: Current Challenges and Future Strategies. First Edition. New Jersey: John Wiley & Sons Ltd., 2021: 229-271.
    [10] RAGAVAN P, ZHOU RC, NG WL, RANA TS, MAGESWARAN T, MOHAN PM, SAXENA A. Natural hybridization in mangroves: an overview[J]. Botanical Journal of the Linnean Society, 2017, 185(2): 208-224.
    [11] ZHOU RC, SHI SH, WU CI. Molecular criteria for determining new hybrid species: an application to the Sonneratia hybrids[J]. Molecular Phylogenetics and Evolution, 2005, 35(3): 595-601.
    [12] DUKE NC. Australia’s Mangroves: the Authoritative Guide to Australia’s Mangrove Plants[M]. St Lucia Campus: University of Queensland, James Cook University, 2006.
    [13] YAN YB, DUKE NC, SUN M. Comparative analysis of the pattern of population genetic diversity in three indo-west Pacific Rhizophora mangrove species[J]. Frontiers in Plant Science, 2016, 7: 1434.
    [14] 钟才荣, 李海生, 黄仲琪, 陈建海, 陈桂株. 海南海桑的育苗造林技术[J]. 中山大学学报(自然科学版), 2003, 42(S1): 224-226. ZHONG CR, LI HS, HUANG ZQ, CHEN JH, CHEN GZ. Seedling raising and afforestation techniques of Sonneratia hainanensis[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2003, 42(S1): 224-226(in Chinese).
    [15] 王瑞江, 陈忠毅, 陈二英, 郑馨仁. 国产海桑属植物的两个杂交种[J]. 广西植物, 1999, 19(3): 199-204. WANG RJ, CHEN ZY, CHEN EY, ZHENG XR. Two hybrids of the genus Sonneratia (Sonneratiaceae) from China[J]. Guihaia, 1999, 19(3): 199-204(in Chinese).
    [16] 张孟文. 海南岛2种红树林自然杂交种与亲本的种群发育对环境适应性比较研究[D]. 海口: 海南大学博士学位论文, 2019. ZHANG MW. Comparative study on environmental adaptability of population development between two mangrove natural hybrids and their parents in Hainan Island[D]. Haikou: Doctoral Dissertation of Hainan University, 2019(in Chinese).
    [17] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18: 607-621.
    [18] VAHSEN ML, BLUM MJ, MEGONIGAL JP, EMRICH SJ, HOLMQUIST JR, STILLER B, TODD-BROWN KEO, McLACHLAN JS. Rapid plant trait evolution can alter coastal wetland resilience to sea level rise[J]. Science, 2023, 379(6630): 393-398.
    [19] LU T, KE MJ, LAVOIE M, JIN YJ, FAN XJ, ZHANG ZY, FU ZW, SUN LW, GILLINGS M, PEÑUELAS J, QIAN HF, ZHU YG. Rhizosphere microorganisms can influence the timing of plant flowering[J]. Microbiome, 2018, 6(1): 231.
    [20] KUDJORDJIE EN, SAPKOTA R, STEFFENSEN SK, FOMSGAARD IS, NICOLAISEN M. Maize synthesized benzoxazinoids affect the host associated microbiome[J]. Microbiome, 2019, 7(1): 59.
    [21] de SOUZA RSC, OKURA VK, ARMANHI JSL, JORRÍN B, LOZANO N, Da SILVA MJ, GONZÁLEZ-GUERRERO M, de ARAÚJO LM, VERZA NC, BAGHERI HC, IMPERIAL J, ARRUDA P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome[J]. Scientific Reports, 2016, 6: 28774.
    [22] CREGGER MA, VEACH AM, YANG ZK, CROUCH MJ, VILGALYS R, TUSKAN GA, SCHADT CW. The Populus holobiont: dissecting the effects of plant niches and genotype on the microbiome[J]. Microbiome, 2018, 6(1): 31.
    [23] EDWARDS JA, SANTOS-MEDELLÍN CM, LIECHTY ZS, NGUYEN B, LURIE E, EASON S, PHILLIPS G, SUNDARESAN V. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice[J]. PLoS Biology, 2018, 16(2): e2003862.
    [24] WEI Z, GU YA, FRIMAN VP, KOWALCHUK GA, XU YC, SHEN QR, JOUSSET A. Initial soil microbiome composition and functioning predetermine future plant health[J]. Science Advances, 2019, 5(9): eaaw0759.
    [25] 叶锦成, 陈毅青, 高琳, 周鲜娇, 钟才荣, 张颖, 王芸. 红树植物拟海桑及其亲本的根际细菌群落特征分析[J]. 热带海洋学报, 2022, 41(6): 75-89. YE JC, CHEN YQ, GAO L, ZHOU XJ, ZHONG CR, ZHANG Y, WANG Y. Analysis of rhizosphere bacterial community characteristics of mangrove plant Sonneratia×gulngai and its parents[J]. Journal of Tropical Oceanography, 2022, 41(6): 75-89(in Chinese).
    [26] JING X, SANDERS NJ, SHI Y, CHU HY, CLASSEN AT, ZHAO K, CHEN LT, SHI Y, JIANG YX, HE JS. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate[J]. Nature Communications, 2015, 6: 8159.
    [27] DAI TJ, ZHANG Y, TANG YS, BAI YH, TAO YL, HUANG B, WEN DH. Identifying the key taxonomic categories that characterize microbial community diversity using full-scale classification: a case study of microbial communities in the sediments of Hangzhou Bay[J]. FEMS Microbiology Ecology, 2016, 92(10): fiw150.
    [28] EDGAR RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996-998.
    [29] CLARKE KR, AINSWORTH M. A method of linking multivariate community structure to environmental variables[J]. Marine Ecology Progress Series, 1993, 92: 205-219.
    [30] XIAO LJ, WANG T, HU R, HAN BP, WANG S, QIAN X, PADISÁK J. Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir[J]. Water Research, 2011, 45(16): 5099-5109.
    [31] SEGATA N, IZARD J, WALDRON L, GEVERS D, MIROPOLSKY L, GARRETT WS, HUTTENHOWER C. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6): R60.
    [32] LOUCA S, PARFREY LW, DOEBELI M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016, 353(6305): 1272-1277.
    [33] YAN GY, XING YJ, HAN SJ, ZHANG JH, WANG QG, MU CC. Long-time precipitation reduction and nitrogen deposition increase alter soil nitrogen dynamic by influencing soil bacterial communities and functional groups[J]. Pedosphere, 2020, 30(3): 363-377.
    [34] HAMADY M, LOZUPONE C, KNIGHT R. Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data[J]. The ISME Journal, 2010, 4(1): 17-27.
    [35] YATSUNENKO T, REY FE, MANARY MJ, TREHAN I, DOMINGUEZ-BELLO MG, CONTRERAS M, MAGRIS M, HIDALGO G, BALDASSANO RN, ANOKHIN AP, HEATH AC, WARNER B, REEDER J, KUCZYNSKI J, CAPORASO JG, LOZUPONE CA, LAUBER C, CLEMENTE JC, KNIGHTS D, KNIGHT R, et al. Human gut microbiome viewed across age and geography[J]. Nature, 2012, 486: 222-227.
    [36] JIANG XT, PENG X, DENG GH, SHENG HF, WANG Y, ZHOU HW, TAM NFY. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland[J]. Microbial Ecology, 2013, 66(1): 96-104.
    [37] OKSANEN J, KINDT R, LEGENDRE P, O’HARA B, STEVENS H, OKSANEN M. The vegan package[J]. Community Ecology Package, 2007, 10(631-637): 719.
    [38] DU H, PAN J, ZHANG CJ, YANG XL, WANG C, LIN XL, LI JH, LIU W, ZHOU HK, YU XL, MO SM, ZHANG GQ, ZHAO GP, QU W, JIANG CJ, TIAN Y, HE ZL, LIU Y, LI M. Analogous assembly mechanisms and functional guilds govern prokaryotic communities in mangrove ecosystems of China and South America[J]. Microbiology Spectrum, 2023, 11(5): e0157723.
    [39] ZHANG XY, CHEN D, HOU XY, JIANG N, LI Y, GE SJ, MU Y, SHEN JY. Nitrification-denitrification co-metabolism in an algal-bacterial aggregates system for simultaneous pyridine and nitrogen removal[J]. Journal of Hazardous Materials, 2023, 460: 132390.
    [40] ZHANG ZF, LIU LR, PAN YP, PAN J, LI M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments[J]. Microbiome, 2023, 11(1): 188.
    [41] 王辉, 刘丽, 黄宇飞, 邹春蕾, 赵颖, 王琦, 刘长远. 黄柄曲霉ASD对辣椒疫病根际真菌菌群结构及土壤功能的影响[J]. 中国生物防治学报, 2021, 37(4): 796-803. WANG H, LIU L, HUANG YF, ZOU CL, ZHAO Y, WANG Q, LIU CY. Effects of Aspergillus flavipes ASD on the structure of rhizosphere fungi and function of soil infected by Phytophthora capsici in pepper[J]. Chinese Journal of Biological Control, 2021, 37(4): 796-803(in Chinese).
    [42] 沈桐, 江进, 李宁, 罗晓楠. 好氧反硝化细菌及其在微污染水源水修复中的应用研究进展[J]. 微生物学报, 2023, 63(2): 465-482. SHEN T, JIANG J, LI N, LUO XN. Aerobic denitrifiers and the application in remediation of micro-polluted water source[J]. Acta Microbiologica Sinica, 2023, 63(2): 465-482(in Chinese).
    [43] 张孟文. 南岛清澜港海桑属种群特征及其濒危种海南海桑繁殖生态学研究[D]. 海口: 海南大学硕士学位论文, 2012. ZHANG MW. Sonneratia plants distribution characteristics and population development research of Sonneratia hainanensis in Hainan Island[D]. Haikou: Master Dissertation of Hainan University, 2012(in Chinese).
    [44] 李海生. 中国海桑属红树植物遗传多样性研究[D]. 广州: 中山大学博士学位论文, 2003. LI HS. Study on genetic diversity of mangrove species from China in the genus Sonneratia[D]. Guangzhou: Doctoral Dissertation of Sun Yat-Sen University, 2003(in Chinese).
    [45] 曾志浩, 袁宗胜, 陈雪莹, 林鸿艳, 黄晓南, 刘芳. 3种红树植物根际与非根际土壤细菌群落结构及多样性特征[J]. 福建农业学报, 2022, 37(6): 809-816. ZENG ZH, YUAN ZS, CHEN XY, LIN HY, HUANG XN, LIU F. Microbial community structure and diversity in rhizosphere and non-rhizosphere soils at fields of three varieties of mangrove plants[J]. Fujian Journal of Agricultural Sciences, 2022, 37(6): 809-816(in Chinese).
    [46] 李振灵, 丁彦礼, 白少元, 李雪芬, 游少鸿, 解庆林. 潜流人工湿地基质结构与微生物群落特征的相关性[J]. 环境科学, 2017, 38(9): 3713-3720. LI ZL, DING YL, BAI SY, LI XF, YOU SH, XIE QL. Correlations between substrate structure and microbial community in subsurface flow constructed wetlands[J]. Environmental Science, 2017, 38(9): 3713-3720(in Chinese).
    [47] 曲武. 红树林沉积物中微生物群落结构研究及琼胶酶基因资源的调查与利用[D]. 厦门: 厦门大学博士学位论文, 2019. QU W. Investigation and ultilization of the microbial community structure and agarase genes in mangrove sediments[D]. Xiamen: Doctoral Dissertation of Xiamen University, 2019(in Chinese).
    [48] 郑德璋, 廖宝文, 郑松发, 许达桂, 韩智. 海南岛清澜港红树树种适应生境能力与水平分布[J]. 林业科学研究, 1995, 8(1): 67-72. ZHENG DZ, LIAO BW, ZHENG SF, XU DG, HAN Z. Habitat adaptability and horizontal distribution of mangrove species in Qinglan Port, Hainan Island[J]. Forest Research, 1995, 8(1): 67-72(in Chinese).
    [49] 唐密, 李昆, 向洪勇, 董雪, 金会鑫, 王悦, 杨海军, 张振兴. 盐胁迫对两种红树植物生态、生理及解剖结构的影响[J]. 生态科学, 2014, 33(3): 513-519. TANG M, LI K, XIANG HY, DONG X, JIN HX, WANG Y, YANG HJ, ZHANG ZX. Research on ecological, physiological and morphological adaptability of two mangrove species to salt stress[J]. Ecological Science, 2014, 33(3): 513-519(in Chinese).
    [50] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248. LIU JW, LI XZ, YAO MJ. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2): 231-248(in Chinese).
    [51] 李海生, 陈桂珠, 施苏华. 海南海桑遗传多样性的ISSR研究[J]. 中山大学学报(自然科学版), 2004, 43(2): 67-71. LI HS, CHEN GZ, SHI SH. Genetic diversity of Sonneratia hainanensis (Sonneratiaceae) detected by intersimple sequence repeats (ISSR) analysis[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2004, 43(2): 67-71(in Chinese).
    [52] MAKITA H, TANAKA E, MITSUNOBU S, MIYAZAKI M, NUNOURA T, UEMATSU K, TAKAKI Y, NISHI S, SHIMAMURA S, KEN TK. Mariprofundus micogutta sp. nov., a novel iron-oxidizing Zetaproteobacterium isolated from a deep-sea hydrothermal field at the Bayonnaise knoll of the Izu-Ogasawara arc, and a description of Mariprofundales ord. nov. and Zetaproteobacteria classis nov.[J]. Archives of Microbiology, 2017, 199(2): 335-346.
    [53] MUTHUKKARUPPAN SSAS. Characterization of plant growth promoting rhizobacteria and fungi associated with rice, mangrove and effluent contaminated soil[J]. Current Botany, 2011, 2(3): 22-25.
    [54] SIMONIN M, DASILVA C, TERZI V, NGONKEU ELM, DIOUF D, KANE A, BÉNA G, MOULIN L. Influence of plant genotype and soil on the wheat rhizosphere microbiome: evidences for a core microbiome across eight African and European soils[J]. FEMS Microbiology Ecology, 2020, 96(6): fiaa067.
    [55] STOPNISEK N, SHADE A. Persistent microbiome members in the common bean rhizosphere: an integrated analysis of space, time, and plant genotype[J]. The ISME Journal, 2021, 15: 2708-2722.
    [56] SUN HS, JIANG SX, JIANG CC, WU CF, GAO M, WANG QH. A review of root exudates and rhizosphere microbiome for crop production[J]. Environmental Science and Pollution Research, 2021, 28(39): 54497-54510.
    [57] ZHANG JY, LIU YX, ZHANG N, HU B, JIN T, XU HR, QIN Y, YAN PX, ZHANG XN, GUO XX, HUI J, CAO SY, WANG X, WANG C, WANG H, QU BY, FAN GY, YUAN LX, GARRIDO-OTER R, CHU CC, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37: 676-684.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李骥,王芸,朱启聪,李国壕,张颖,蔺红苹,王锂韫,李敏,唐蜀昆. 濒危红树杂交种海南海桑的杂种劣势与其根际微生物的关联分析[J]. 微生物学报, 2024, 64(8): 2823-2843

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-16
  • 最后修改日期:2024-03-25
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码