MoLcb3参与调控稻瘟病菌鞘脂平衡和胁迫反应
作者:
基金项目:

浙江省自然科学基金(LQ22C140005);国家自然科学基金(32100159)


MoLcb3 contributes to sphingolipid balance and stress responses in Magnaporthe oryzae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [79]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    鞘氨醇1-磷酸(sphingosine-1-phosphate, S1P)是一种具有生物活性的鞘脂,因其参与各种生物过程的调节和许多疾病的发展而引人注目,鞘氨醇1-磷酸磷酸酶(S1P phosphatase, S1PP)在控制S1P胞内代谢起着重要作用,而其在植物病原真菌中的生物学功能尚无报道。【目的】 探究稻瘟病菌(Magnaporthe oryzae)鞘氨醇1-磷酸磷酸酶在形态分化、致病过程和维持鞘脂平衡的作用。【方法】 利用同源重组方法敲除稻瘟病菌鞘氨醇1-磷酸磷酸酶编码基因MoLCB3,获得ΔMolcb3突变体,并通过表型分析、基因互补、脂质代谢组学分析等对MoLcb3的生物学功能进行研究,同时在ΔMolcb3突变体中敲除稻瘟病菌鞘氨醇激酶(sphingosine kinase, SK) MoLcb4,进一步探究磷酸酶MoLcb3和激酶MoLcb4之间的关系。【结果】 敲除MoLCB3基因导致稻瘟病菌菌丝生长速率和产孢量显著下降,影响分生孢子畸形率和附着胞初期形成,ΔMolcb3突变体完全丧失对大麦的致病性。ΔMolcb3突变体在应对高渗胁迫、细胞壁完整性胁迫、高温胁迫,以及真菌脂质合成抑制剂三唑酮和多球壳菌素时,与野生型有显著差异,说明MoLcb3参与上述胁迫反应和脂质合成代谢。ΔMolcb3ΔMolcb4双敲突变体可基本互补ΔMolcb3突变体所有表型缺陷。另外,脂质代谢组学分析显示,与野生型相比,ΔMolcb3突变体部分脂质含量有显著差异,例如游离脂肪酸、神经酰胺、磷脂酰肌醇等。【结论】 鞘氨醇1-磷酸磷酸酶MoLcb3在菌丝生长、产孢、孢子萌发、致病性、胁迫应激反应和维持脂质稳态等过程中起着重要作用,此外敲除MoLCB4基因能缓解MoLcb3缺失带来的影响。本研究的结果为进一步阐明稻瘟病菌鞘脂代谢通路以及真菌脂质生物合成抑制剂的开发提供新的思路。

    Abstract:

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid notable for its involvement in the regulation of biological processes and the development of diseases. Sphingosine-1-phosphate phosphatase (S1PP) plays a role in regulating the intracellular metabolism of S1P, while the biological roles of S1PP in plant pathogenic fungi have not been reported. [Objective] To explore the role of S1PP in the morphological differentiation, pathogenic process, and maintenance of sphingolipid balance of Magnaporthe oryzae. [Methods] We employed homologous recombination to delete the S1PP gene MoLCB3 from M. oryzae and characterized the obtained mutant ΔMolcb3 was by phenotypic analysis, gene complementation, and lipid metabolomics. Furthermore, we deleted the sphingosine kinase (SK) gene MoLcb4 from ΔMolcb3 to explore the relationship between MoLcb3 and MoLcb4. [Results] The deletion of MoLCB3 resulted in significant decreases in the mycelial growth rate and spore production and affected conidial malformation and initial appressorium formation. ΔMolcb3 completely lost the pathogenicity to barley. Moreover, the ΔMolcb3 mutant were significantly different from the wild type in responding to hyperosmic stress, cell wall integrity stress, high temperature stress, and fungal lipid synthesis inhibitors triadimefon and myriocin, suggesting that MoLcb3 was involved in these stress responses and lipid anabolism. Interestingly, the double mutant ΔMolcb3ΔMolcb4 basically compensated for all phenotypic defects of ΔMolcb3. In addition, lipid metabolomics showed that compared with the wild type, ΔMolcb3 presented significantly different levels of lipids, such as free fatty acids, ceramides, and phosphatidyl inositol. [Conclusion] MoLcb3 plays an important role in the mycelial growth, sporulation, spore germination, pathogenicity, stress responses, and lipid homeostasis. In addition, knockout of MoLCB4 can cushion the effects of MoLcb3 deletion. The results of this study provide new ideas for elucidating the sphingolipid metabolic pathway of M. oryzae and the development of inhibitors of fungal lipid biosynthesis.

    参考文献
    [1] JIN BJ, CHUN HJ, CHOI CW, LEE SH, CHO HM, PARK MS, BAEK D, PARK SY, LEE YH, KIM MC. Host-induced gene silencing is a promising biological tool to characterize the pathogenicity of Magnaporthe oryzae and control fungal disease in rice[J]. Plant, Cell & Environment, 2024, 47(1): 319-336.
    [2] AL MAMUN KHAN MA, AHSAN A, KHAN MA, SANJANA JM, BISWAS S, SALEH MA, GUPTA DR, HOQUE MN, SAKIF TI, RAHMAN MM, ISLAM T. In-silico prediction of highly promising natural fungicides against the destructive blast fungus Magnaporthe oryzae[J]. Heliyon, 2023, 9(4): e15113.
    [3] PENNISI E. Armed and dangerous[J]. Science, 2010, 327(5967): 804-805.
    [4] NALLEY L, TSIBOE F, DURAND-MORAT A, SHEW A, THOMA G. Economic and environmental impact of rice blast pathogen (Magnaporthe oryzae) alleviation in the United States[J]. PLoS One, 2016, 11(12): e0167295.
    [5] GARCIA N, FARMER AN, BAPTISTE R, FERNANDEZ J. Gene replacement by a selectable marker in the filamentous fungus Magnaporthe oryzae[J]. Bio-protocol, 2023, 13(17): e4809.
    [6] MATOS GS, FERNANDES CM, del POETA M. Role of sphingolipids in the host-pathogen interaction[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2023, 1868(11): 159384.
    [7] OLIVEIRA-GARCIA E, YAN X, OSES-RUIZ M, de PAULA S, TALBOT NJ. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae[J]. The New Phytologist, 2024, 241(3): 1007-1020.
    [8] GONZÁLEZ-RUBIO G, FERNÁNDEZ-ACERO T, MARTÍN H, MOLINA M. Mitogen-activated protein kinase phosphatases (MKPs) in fungal signaling: conservation, function, and regulation[J]. International Journal of Molecular Sciences, 2019, 20(7): 1709.
    [9] LU KL, CHEN RR, YANG Y, XU H, JIANG JH, LI LW. Involvement of the cell wall-integrity pathway in signal recognition, cell-wall biosynthesis, and virulence in Magnaporthe oryzae[J]. Molecular Plant-Microbe Interactions: MPMI, 2023, 36(10): 608-622.
    [10] ASIF N, LIN FC, LI L, ZHU XM, NAWAZ S. Regulation of autophagy machinery in Magnaporthe oryzae[J]. International Journal of Molecular Sciences, 2022, 23(15): 8366.
    [11] FERNANDEZ J. The phantom menace: latest findings on effector biology in the rice blast fungus[J]. aBIOTECH, 2023, 4(2): 140-154.
    [12] WEI YY, LIANG S, ZHU XM, LIU XH, LIN FC. Recent advances in effector research of Magnaporthe oryzae[J]. Biomolecules, 2023, 13(11): 1650.
    [13] MALYARENKO TV, KICHA AA, STONIK VA, IVANCHINA NV. Sphingolipids of Asteroidea and Holothuroidea: structures and biological activities[J]. Marine Drugs, 2021, 19(6): 330.
    [14] BRESLOW DK. Sphingolipid homeostasis in the endoplasmic reticulum and beyond[J]. Cold Spring Harbor Perspectives in Biology, 2013, 5(4): a013326.
    [15] SCHLARMANN P, IKEDA A, FUNATO K. Membrane contact sites in yeast: control hubs of sphingolipid homeostasis[J]. Membranes, 2021, 11(12): 971.
    [16] MAMODE CASSIM A, GOUGUET P, GRONNIER J, LAURENT N, GERMAIN V, GRISON M, BOUTTÉ Y, GERBEAU-PISSOT P, SIMON-PLAS F, MONGRAND S. Plant lipids: key players of plasma membrane organization and function[J]. Progress in Lipid Research, 2019, 73: 1-27.
    [17] SANTOS FC, MARQUÊS JT, BENTO-OLIVEIRA A, de ALMEIDA RFM. Sphingolipid-enriched domains in fungi[J]. FEBS Letters, 2020, 594(22): 3698-3718.
    [18] MOTA FERNANDES C, del POETA M. Fungal sphingolipids: role in the regulation of virulence and potential as targets for future antifungal therapies[J]. Expert Review of Anti-Infective Therapy, 2020, 18(11): 1083-1092.
    [19] ATRIWAL T, AZEEM K, HUSAIN FM, HUSSAIN A, KHAN MN, ALAJMI MF, ABID M. Mechanistic understanding of Candida albicans biofilm formation and approaches for its inhibition[J]. Frontiers in Microbiology, 2021, 12: 638609.
    [20] SANTOS TCB, DINGJAN T, FUTERMAN AH. The sphingolipid anteome: implications for evolution of the sphingolipid metabolic pathway[J]. FEBS Letters, 2022, 596(18): 2345-2363.
    [21] GOÑI FM, SOT J, ALONSO A. Biophysical properties of sphingosine, ceramides and other simple sphingolipids[J]. Biochemical Society Transactions, 2014, 42(5): 1401-1408.
    [22] YUAN HQ, ZHU B, LI C, ZHAO ZG. Ceramide in cerebrovascular diseases[J]. Frontiers in Cellular Neuroscience, 2023, 17: 1191609.
    [23] PARK KH, YE ZW, ZHANG J, HAMMAD SM, TOWNSEND DM, ROCKEY DC, KIM SH. 3-ketodihydrosphingosine reductase mutation induces steatosis and hepatic injury in zebrafish[J]. Scientific Reports, 2019, 9: 1138.
    [24] CINGOLANI F, FUTERMAN AH, CASAS J. Ceramide synthases in biomedical research[J]. Chemistry and Physics of Lipids, 2016, 197: 25-32.
    [25] FABRIAS G, MUÑOZ-OLAYA J, CINGOLANI F, SIGNORELLI P, CASAS J, GAGLIOSTRO V, GHIDONI R. Dihydroceramide desaturase and dihydrosphingolipids: debutant players in the sphingolipid arena[J]. Progress in Lipid Research, 2012, 51(2): 82-94.
    [26] GAULT CR, OBEID LM, HANNUN YA. An overview of sphingolipid metabolism: from synthesis to breakdown[J]. Advances in Experimental Medicine and Biology, 2010, 688: 1-23.
    [27] GONZALEZ-SOLIS A, HAN GS, GAN L, LI YF, MARKHAM JE, CAHOON RE, DUNN TM, CAHOON EB. Unregulated sphingolipid biosynthesis in gene-edited Arabidopsis ORM mutants results in nonviable seeds with strongly reduced oil content[J]. The Plant Cell, 2020, 32(8): 2474-2490.
    [28] CRIVELLI SM, GIOVAGNONI C, ZHU ZH, TRIPATHI P, ELSHERBINI A, QUADRI Z, PU J, ZHANG LP, FERKO B, BERKES D, SPASSIEVA SD, MARTINEZ-MARTINEZ P, BIEBERICH E. Function of ceramide transfer protein for biogenesis and sphingolipid composition of extracellular vesicles[J]. Journal of Extracellular Vesicles, 2022, 11(6): e12233.
    [29] MASHIMA R, OKUYAMA T, OHIRA M. Biosynthesis of long chain base in sphingolipids in animals, plants and fungi[J]. Future Science OA, 2019, 6(1): FSO434.
    [30] SABA JD. Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease[J]. Journal of Lipid Research, 2019, 60(3): 456-463.
    [31] OKUNDAYE B, BIYANI N, MOITRA S, ZHANG K. The Golgi-localized sphingosine-1-phosphate phosphatase is indispensable for Leishmania major[J]. Scientific Reports, 2022, 12: 16064.
    [32] de CEUSTER P, MANNAERTS GP, van VELDHOVEN PP. Identification and subcellular localization of sphinganine-phosphatases in rat liver[J]. The Biochemical Journal, 1995, 311(Pt 1): 139-146.
    [33] MAO C, WADLEIGH M, JENKINS GM, HANNUN YA, OBEID LM. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase[J]. The Journal of Biological Chemistry, 1997, 272(45): 28690-28694.
    [34] MANDALA SM, THORNTON R, GALVE-ROPERH I, POULTON S, PETERSON C, OLIVERA A, BERGSTROM J, KURTZ MB, SPIEGEL S. Molecular cloning and characterization of a lipid phosphohydrolase that degrades sphingosine-1-phosphate and induces cell death[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(14): 7859-7864.
    [35] MAO C, OBEID LM. Yeast sphingosine-1-phosphate phosphatases: assay, expression, deletion, purification, and cellular localization by GFP tagging[J]. Methods in Enzymology, 2000, 311: 223-232.
    [36] OGAWA C, KIHARA A, GOKOH M, IGARASHI Y. Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2[J]. The Journal of Biological Chemistry, 2003, 278(2): 1268-1272.
    [37] ALLENDE ML, SIPE LM, TUYMETOVA G, WILSON-HENJUM KL, CHEN WP, PROIA RL. Sphingosine-1-phosphate phosphatase 1 regulates keratinocyte differentiation and epidermal homeostasis[J]. The Journal of Biological Chemistry, 2013, 288(25): 18381-18391.
    [38] HE J, ZHAO HP, LIU X, WANG DM, WANG Y, AI YQ, YANG JJ. Sevoflurane suppresses cell viability and invasion and promotes cell apoptosis in colon cancer by modulating exosome-mediated circ-HMGCS1via the miR-34a-5p/SGPP1 axis[J]. Oncology Reports, 2020, 44(6): 2429-2442.
    [39] TAGUCHI Y, ALLENDE ML, MIZUKAMI H, COOK EK, GAVRILOVA O, TUYMETOVA G, CLARKE BA, CHEN WP, OLIVERA A, PROIA RL. Sphingosine-1-phosphate phosphatase 2 regulates pancreatic islet β-cell endoplasmic reticulum stress and proliferation[J]. The Journal of Biological Chemistry, 2016, 291(23): 12029-12038.
    [40] MANDALA SM, THORNTON R, TU Z, KURTZ MB, NICKELS J, BROACH J, MENZELEEV R, SPIEGEL S. Sphingoid base 1-phosphate phosphatase: a key regulator of sphingolipid metabolism and stress response[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(1): 150-155.
    [41] 朱学明. 稻瘟病菌细胞自噬和内吞途径调控因子功能研究[D]. 杭州: 浙江大学博士学位论文, 2020. ZHU XM. Studies on the biological functions of the autophagy and endocytosis regulatory factors in the rice blast fungus[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2020(in Chinese).
    [42] EMRI T, FORGÁCS K, PÓCSI I. Biologia futura: combinatorial stress responses in fungi[J]. Biologia Futura, 2022, 73(2): 207-217.
    [43] BROWN AJP, COWEN LE, Di PIETRO A, QUINN J. Stress adaptation[J]. Microbiology Spectrum, 2017, 5(4). DOI: 10.1128/microbiolspec.funk-0048-2016.
    [44] RONCERO C, DURÁN A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization[J]. Journal of Bacteriology, 1985, 163(3): 1180-1185.
    [45] KOVÁCS Z, SZARKA M, KOVÁCS S, BOCZONÁDI I, EMRI T, ABE K, PÓCSI I, PUSZTAHELYI T. Effect of cell wall integrity stress and RlmA transcription factor on asexual development and autolysis in Aspergillus nidulans[J]. Fungal Genetics and Biology, 2013, 54: 1-14.
    [46] IGUAL JC, JOHNSON AL, JOHNSTON LH. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity[J]. The EMBO Journal, 1996, 15(18): 5001-5013.
    [47] SCHROEDER L, IKUI AE. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiae[J]. PLoS One, 2019, 14(3): e0199484.
    [48] YUN YZ, YIN DF, DAWOOD DH, LIU X, CHEN Y, MA ZH. Functional characterization of FgERG3 and FgERG5 associated with ergosterol biosynthesis, vegetative differentiation and virulence of Fusarium graminearum[J]. Fungal Genetics and Biology, 2014, 68: 60-70.
    [49] ASAMI T, MIZUTANI M, SHIMADA Y, GODA H, KITAHATA N, SEKIMATA K, HAN SY, FUJIOKA S, TAKATSUTO S, SAKATA K, YOSHIDA S. Triadimefon, a fungicidal triazole-type P450 inhibitor, induces brassinosteroid deficiency-like phenotypes in plants and binds to DWF4 protein in the brassinosteroid biosynthesis pathway[J]. The Biochemical Journal, 2003, 369(Pt 1): 71-76.
    [50] JENKINS GM. The emerging role for sphingolipids in the eukaryotic heat shock response[J]. Cellular and Molecular Life Sciences CMLS, 2003, 60(4): 701-710.
    [51] WELLS GB, DICKSON RC, LESTER RL. Heat-induced elevation of ceramide in Saccharomyces cerevisiae via de novo synthesis[J]. The Journal of Biological Chemistry, 1998, 273(13): 7235-7243.
    [52] JENKINS GM, COWART LA, SIGNORELLI P, PETTUS BJ, CHALFANT CE, HANNUN YA. Acute activation of de novo sphingolipid biosynthesis upon heat shock causes an accumulation of ceramide and subsequent dephosphorylation of SR proteins[J]. The Journal of Biological Chemistry, 2002, 277(45): 42572-42578.
    [53] SKRZYPEK MS, NAGIEC MM, LESTER RL, DICKSON RC. Analysis of phosphorylated sphingolipid long-chain bases reveals potential roles in heat stress and growth control in Saccharomyces[J]. Journal of Bacteriology, 1999, 181(4): 1134-1140.
    [54] MAO C, SABA JD, OBEID LM. The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses[J]. The Biochemical Journal, 1999, 342(Pt 3): 667-675.
    [55] VERI AO, ROBBINS N, COWEN LE. Regulation of the heat shock transcription factor Hsf1 in fungi: implications for temperature-dependent virulence traits[J]. FEMS Yeast Research, 2018, 18(5): foy041.
    [56] TAHA TA, MULLEN TD, OBEID LM. A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death[J]. Biochimica et Biophysica Acta, 2006, 1758(12): 2027-2036.
    [57] SPIEGEL S, MILSTIEN S. Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways[J]. Biochemical Society Transactions, 2003, 31(Pt 6): 1216-1219.
    [58] NAGIEC MM, SKRZYPEK M, NAGIEC EE, LESTER RL, DICKSON RC. The LCB4(YOR171c) and LCB5(YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases[J]. The Journal of Biological Chemistry, 1998, 273(31): 19437-19442.
    [59] LIU L, SAKAKIBARA K, CHEN Q, OKAMOTO K. Receptor-mediated mitophagy in yeast and mammalian systems[J]. Cell Research, 2014, 24(7): 787-795.
    [60] VOIT EO, ALVAREZ-VASQUEZ F, HANNUN YA. Computational analysis of sphingolipid pathway systems[J]. Advances in Experimental Medicine and Biology, 2010, 688: 264-275.
    [61] BIELAWSKI J, PIERCE JS, SNIDER J, REMBIESA B, SZULC ZM, BIELAWSKA A. Sphingolipid analysis by high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS)[J]. Advances in Experimental Medicine and Biology, 2010, 688: 46-59.
    [62] NASRALLAH MA, PETERSON ND, SZUMEL ES, LIU PP, PAGE AL, TSE SY, WANI KA, TOCHENY CE, PUKKILA-WORLEY R. Transcriptional suppression of sphingolipid catabolism controls pathogen resistance in C. elegans[J]. PLoS Pathogens, 2023, 19(10): e1011730.
    [63] COURSOL S, le STUNFF H, LYNCH DV, GILROY S, ASSMANN SM, SPIEGEL S. Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture[J]. Plant Physiology, 2005, 137(2): 724-737.
    [64] QIE L, NAGIEC MM, BALTISBERGER JA, LESTER RL, DICKSON RC. Identification of a Saccharomyces gene, LCB3, necessary for incorporation of exogenous long chain bases into sphingolipids[J]. The Journal of Biological Chemistry, 1997, 272(26): 16110-16117.
    [65] MAHAJAN-THAKUR S, BIEN-MÖLLER S, MARX S, SCHROEDER H, RAUCH BH. Sphingosine 1-phosphate (S1P) signaling in glioblastoma multiforme-a systematic review[J]. International Journal of Molecular Sciences, 2017, 18(11): 2448.
    [66] JOZEFCZUK E, GUZIK TJ, SIEDLINSKI M. Significance of sphingosine-1-phosphate in cardiovascular physiology and pathology[J]. Pharmacological Research, 2020, 156: 104793.
    [67] van ED G. The role of sphingosine 1-phosphate metabolism in brain health and disease[J]. Pharmacology & Therapeutics, 2023, 244: 108381.
    [68] KIM KM, SHIN EJ, YANG JH, KI SH. Integrative roles of sphingosine kinase in liver pathophysiology[J]. Toxicological Research, 2023, 39(4): 549-564.
    [69] BAO YH, GUO YC, ZHANG CL, FAN FH, YANG WC. Sphingosine kinase 1 and sphingosine-1-phosphate signaling in colorectal cancer[J]. International Journal of Molecular Sciences, 2017, 18(10): 2109.
    [70] ZHENG XJ, LI W, REN LW, LIU JY, PANG XC, CHEN XP, KANG D, WANG JH, DU GH. The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy[J]. Pharmacology & Therapeutics, 2019, 195: 85-99.
    [71] YI XL, TANG XM, LI TL, CHEN L, HE HL, WU XX, XIANG CL, CAO M, WANG ZX, WANG Y, WANG YP, HUANG XB. Therapeutic potential of the sphingosine kinase 1 inhibitor, PF-543[J]. Biomedicine & Pharmacotherapy, 2023, 163: 114401.
    [72] XUE YH, JIANG KQ, OU L, SHEN MJ, YANG Y, LU JJ, XU WH. Targeting sphingosine kinase 1/2 by a novel dual inhibitor SKI-349 suppresses non-small cell lung cancer cell growth[J]. Cell Death & Disease, 2022, 13: 602.
    [73] HENGST JA, HEGDE S, PAULSON RF, YUN JK. Development of SKI-349, a dual-targeted inhibitor of sphingosine kinase and microtubule polymerization[J]. Bioorganic & Medicinal Chemistry Letters, 2020, 30(20): 127453.
    [74] LANTERMAN MM, SABA JD. Characterization of sphingosine kinase (SK) activity in Saccharomyces cerevisiae and isolation of SK-deficient mutants[J]. The Biochemical Journal, 1998, 332(Pt 2): 525-531.
    [75] NISHIKAWA M, HOSOKAWA K, ISHIGURO M, MINAMIOKA H, TAMURA K, HARA-NISHIMURA I, TAKAHASHI Y, SHIMAZAKI KI, IMAI H. Degradation of sphingoid long-chain base 1-phosphates (LCB-1Ps): functional characterization and expression of AtDPL1 encoding LCB-1P lyase involved in the dehydration stress response in Arabidopsis[J]. Plant and Cell Physiology, 2008, 49(11): 1758-1763.
    [76] LAMBOUR B, GLENZ R, FORNER C, KRISCHKE M, MUELLER MJ, FEKETE A, WALLER F. Sphingolipid long-chain base phosphate degradation can be a rate-limiting step in long-chain base homeostasis[J]. Frontiers in Plant Science, 2022, 13: 911073.
    [77] YANAGAWA D, ISHIKAWA T, IMAI H. Synthesis and degradation of long-chain base phosphates affect fumonisin B1-induced cell death in Arabidopsis thaliana[J]. Journal of Plant Research, 2017, 130(3): 571-585.
    [78] HAN GS, GUPTA SD, GABLE K, BACIKOVA D, SENGUPTA N, SOMASHEKARAPPA N, PROIA RL, HARMON JM, DUNN TM. The ORMs interact with transmembrane domain 1 of Lcb1 and regulate serine palmitoyltransferase oligomerization, activity and localization[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids, 2019, 1864(3): 245-259.
    [79] KIM S, FYRST H, SABA J. Accumulation of phosphorylated sphingoid long chain bases results in cell growth inhibition in Saccharomyces cerevisiae[J]. Genetics, 2000, 156(4): 1519-1529.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晓智,王蕾,李琳,鲍坚东,朱学明,林福呈. MoLcb3参与调控稻瘟病菌鞘脂平衡和胁迫反应[J]. 微生物学报, 2024, 64(8): 2918-2939

复制
分享
文章指标
  • 点击次数:114
  • 下载次数: 375
  • HTML阅读次数: 267
  • 引用次数: 0
历史
  • 收稿日期:2024-01-23
  • 最后修改日期:2024-04-01
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码