嗜冷德沃斯氏菌来源GH1家族β-葡萄糖苷酶Bgl59的原核表达及酶学性质分析
作者:
基金项目:

福建省自然科学基金(2019J01280,2021J01171)


Prokaryotic expression and characterization of the GH1 β-glucosidase Bgl59 from Devosia psychrophila
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    β-葡萄糖苷酶在食品、医学以及生物能源等多个领域有着广泛的应用,因此挖掘新型高效的β-葡萄糖苷酶是十分必要的。【目的】 对嗜冷德沃斯氏菌(Devosia psychrophile)来源的GH1家族的葡萄糖苷酶原核表达并测定其酶学性质。【方法】 通过人工合成技术得到D. psychrophila来源的β-葡萄糖苷酶的编码基因,命名为bgl59。将该基因转化到大肠杆菌(Escherichia coli) BL21(DE3)中,诱导基因表达,对得到的蛋白进行纯化并测定其酶学性质。【结果】 Bgl59的分子量为48.8 kDa,最适温度为55 ℃,最适pH为6.0;Bgl59在pH 5.0−8.5范围内处理1 h后仍保持80%以上酶活;在8种供试底物中,Bgl59对4-硝基苯基-β-d-葡萄糖苷(4-nitrophenyl-β-d-glucopyranoside, pNPG)有着最高的水解能力,其Km为3.090 mmol/L,Vmax为194 μmol/(min·mg),kcat为159 s–1;1 mmol/L的Ca2+、Co2+对Bgl59具有明显的激活作用,0.1%的SDS会使酶活全部丧失;0.10 mol/L葡萄糖和0.30 mol/L木糖具有促酶活作用,可分别使Bgl59酶活提高74%和91%;在1.25 mol/L葡萄糖或2.00 mol/L木糖存在的条件下,仍可保持50%以上酶活。【结论】 Bgl59的酶学性质优异,具有良好的pH稳定性,对金属离子或化学试剂都具有一定耐受能力,是少见的葡萄糖激活型β-葡萄糖苷酶,具有优良的糖促活性和耐受性,在未来的工业生产以及应用中具有潜在研究价值。

    Abstract:

    β-glucosidases have been widely used in food, medicine, bioenergy and other fields, and thus it is necessary to explore new and efficient β-glucosidases. [Objective] To realize the prokaryotic expression of a GH1 glucosidase derived from Devosia psychrophila and characterize the enzymatic properties of the expressed protein. [Methods] The gene encoding the β-glucosidase derived from D. psychrophila was synthesized, named bgl59, and then transformed into Escherichia coli BL21(DE3). After the gene expression was induced, and the obtained protein was purified and characterized for the enzymatic properties. [Results] Bgl59 had a molecular weight of 48.8 kDa, with the highest activity at 55 ℃ and pH 6.0. After treatment for 1 h within the range of pH 5.0–8.5, Bgl59 maintained the relative activity over 80%. Bgl59 had the highest hydrolysis ability for 4-nitrophenyl-β-d-glucopyranoside (pNPG) among the eight substrates tested, with the Km of 3.090 mmol/L, Vmax of 194 μmol/(min·mg), and kcat of 159 s−1. The presence of 1 mmol/L of Ca2+ and Co2+ had a significant activating effect on Bgl59, while the presence of 0.1% SDS resulted in a complete loss of enzyme activity. The presence of 0.10 mol/L glucose and 0.30 mol/L xylose increased the activity of Bgl59 by 74% and 91%, respectively. Moreover, the enzyme remained the relative activity above 50% even when being cultured with 1.25 mol/L glucose or 2.00 mol/L xylose. [Conclusion] Bgl59 exhibits outstanding enzymatic properties, robust pH stability, and tolerance to metal ions and chemical reagents. It is a rare glucose-activated β-glucosidase with exceptional tolerance to glucose, holding significant potential for future industrial production and application.

    参考文献
    [1] KETUDAT CAIRNS JR, ESEN A. β-glucosidases[J]. Cellular and Molecular Life Sciences, 2010, 67(20): 3389-3405.
    [2] ZHANG RQ, CAO CH, BI JH, LI YJ. Fungal cellulases: protein engineering and post-translational modifications[J]. Applied Microbiology and Biotechnology, 2022, 106(1): 1-24.
    [3] WANG KX, HUANG QX, LI HX, ZHAO XH. Co-evolution of β-glucosidase activity and product tolerance for increasing cellulosic ethanol yield[J]. Biotechnology Letters, 2020, 42(11): 2239-2250.
    [4] AMER A, FAIZ UH N, KASHFA B, AASIA B. Microbial β-glucosidase: sources, production and applications[J]. Journal of Applied & Environmental Microbiology, 2017, 5(1): 31-46.
    [5] LIEW KJ, LIM L, WOO HY, CHAN KG, SHAMSIR MS, GOH KM. Purification and characterization of a novel GH1 beta-glucosidase from Jeotgalibacillus malaysiensis[J]. International Journal of Biological Macromolecules, 2018, 115: 1094-1102.
    [6] LI Y, GAO N, ZHANG XY, ZHAO GQ, SONG X. Sophorolipid production using lignocellulosic biomass by co-culture of several recombinant strains of Starmerella bombicola with different heterologous cellulase genes from Penicillum oxalicum[J]. Applied Biochemistry and Biotechnology, 2021, 193(2): 377-388.
    [7] YANG G, YANG DQ, WANG XD, CAO WT. A novel thermostable cellulase-producing Bacillus licheniformis A5 acts synergistically with Bacillus subtilis B2 to improve degradation of Chinese distillers’ grains[J]. Bioresource Technology, 2021, 325: 124729.
    [8] GOMES DG, SERNA-LOAIZA S, CARDONA CA, GAMA M, DOMINGUES L. Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge[J]. Bioresource Technology, 2018, 267: 347-355.
    [9] FUSCO FA, FIORENTINO G, PEDONE E, CONTURSI P, BARTOLUCCI S, LIMAURO D. Biochemical characterization of a novel thermostable β-glucosidase from Dictyoglomus turgidum[J]. International Journal of Biological Macromolecules, 2018, 113: 783-791.
    [10] MALLEK-FAKHFAKH H, BELGHITH H. Physicochemical properties of thermotolerant extracellular β-glucosidase from Talaromyces thermophilus and enzymatic synthesis of cello-oligosaccharides[J]. Carbohydrate Research, 2016, 419: 41-50.
    [11] HAMID B, BASHIR Z, YATOO AM, MOHIDDIN F, MAJEED N, BANSAL M, POCZAI P, ALMALKI WH, SAYYED RZ, SHATI AA, ALFAIFI MY. Cold-active enzymes and their potential industrial applications-a review[J]. Molecules, 2022, 27(18): 5885.
    [12] YADAV AN, SACHAN SG, VERMA P, KAUSHIK R, SAXENA AK. Cold active hydrolytic enzymes production by psychrotrophic Bacilli isolated from three sub-glacial lakes of NW Indian Himalayas[J]. Journal of Basic Microbiology, 2016, 56(3): 294-307.
    [13] TANAKA T, SAWANO M, OGASAHARA K, SAKAGUCHI Y, BAGAUTDINOV B, KATOH E, KUROISHI C, SHINKAI A, YOKOYAMA S, YUTANI K. Hyper-thermostability of CutA1 protein, with a denaturation temperature of nearly 150 degrees C[J]. FEBS Letters, 2006, 580(17): 4224-4230.
    [14] ZHANG DC, REDZIC M, LIU HC, ZHOU YG, SCHINNER F, MARGESIN R. Devosia psychrophila sp. nov. and Devosia glacialis sp. nov., from alpine glacier cryoconite, and an emended description of the genus Devosia[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 3): 710-715.
    [15] 何金见, 沈风飞, 刘鑫涵, 杨天均, 李宝通, 石鹏君, 刘慧芹, 曾婉宁. 嗜酸古菌Cuniculiplasma divulgatum来源的GH1家族中温β-葡萄糖苷酶CdBglA的原核表达及酶学性质分析[J]. 生物工程学报, 2023, 39(11): 4694-4707. HE JJ, SHEN FF, LIU XH, YANG TJ, LI BT, SHI PJ, LIU HQ, ZENG WN. Expression and characterization of mesophilic GH1β-glucosidase CdBglA from acidophilic Cuniculiplasma divulgatum[J]. Chinese Journal of Biotechnology, 2023, 39(11): 4694-4707(in Chinese).
    [16] 黄裕颖, 李馨伟, 李蕾, 朱倩, 饶孟迪, 尹以瑞. Thermomonospora amylolytica 来源嗜碱β-葡萄糖苷酶的克隆、异源表达及其酶学性质研究[J]. 中国饲料, 2023(17): 56-61. HUANG YY, LI XW, LI L, ZHU Q, RAO MD, YIN YR. Cloning, heterologous expression and characterization of a basophilic β-glucosidase from Thermomonospora amylolytica[J]. China Feed, 2023(17): 56-61(in Chinese).
    [17] 郑芳芳, 王金佩, 林宇, 王子龙, 韦宇拓, 黄日波, 杜丽琴. 链霉菌GXT6β-葡萄糖苷酶的酶学性质及葡萄糖耐受性分子改造[J]. 微生物学报, 2018, 58(10): 1839-1852. ZHENG FF, WANG JP, LIN Y, WANG ZL, WEI U, HUANG RB, DU LQ. Characterization of β-glucosidase from Streptomyces sp. GXT6 and its molecular modification of glucose tolerance[J]. Acta Microbiologica Sinica, 2018, 58(10): 1839-1852(in Chinese).
    [18] 刘洋, 彭惠, 张汆, 董艺凝, 孙星, 罗侠, 蔡华, 赵维萍. 嗜热淀粉芽孢杆菌来源β-葡萄糖苷酶的重组表达与酶学性质[J]. 微生物学通报, 2020, 47(7): 2050-2059. LIU Y, PENG H, ZHANG C, DONG YN, SUN X, LUO X, CAI H, ZHAO WP. Recombinant expression and characterization of β-glucosidase from Bacillus thermoamylovorans[J]. Microbiology China, 2020, 47(7): 2050-2059(in Chinese).
    [19] MAI ZM, YANG J, TIAN XP, LI J, ZHANG S. Gene cloning and characterization of a novel salt-tolerant and glucose-enhanced β-glucosidase from a marine Streptomycete[J]. Applied Biochemistry and Biotechnology, 2013, 169(5): 1512-1522.
    [20] LI G, JIANG Y, FAN XJ, LIU YH. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library[J]. Bioresource Technology, 2012, 123: 15-22.
    [21] ZANOELO FF, POLIZELI MD, TERENZI HF, JORGE JA. Beta-glucosidase activity from the thermophilic fungus Scytalidium thermophilum is stimulated by glucose and xylose[J]. FEMS Microbiology Letters, 2004, 240(2): 137-143.
    [22] 唐乐丽, 王晓萌, 吴秀玲, 黄庆, 李荷. 宏基因组文库新型β-葡萄糖苷酶的筛选、克隆及酶学性质分析[J]. 食品科学, 2018, 39(4): 118-124. TANG LL, WANG XM, WU XL, HUANG Q, LI H. Screening, cloning and characterization of a novel β-glucosidase from soil metagenomic library[J]. Food Science, 2018, 39(4): 118-124(in Chinese).
    [23] KARNCHANATAT A, PETSOM A, SANGVANICH P, PIAPHUKIEW J, WHALLEY AJS, REYNOLDS CD, SIHANONTH P. Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii (Ehrenb.: Fr.) Rehm[J]. FEMS Microbiology Letters, 2007, 270(1): 162-170.
    [24] MAMMA D, HATZINIKOLAOU DG, CHRISTAKOPOULOS P. Biochemical and catalytic properties of two intracellular β-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides[J]. Journal of Molecular Catalysis B: Enzymatic, 2004, 27(4/5/6): 183-190.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘颖,董盼盼,孙丽芳,吴琳娇,李兰兰,吴允昆. 嗜冷德沃斯氏菌来源GH1家族β-葡萄糖苷酶Bgl59的原核表达及酶学性质分析[J]. 微生物学报, 2024, 64(8): 2955-2966

复制
分享
文章指标
  • 点击次数:148
  • 下载次数: 416
  • HTML阅读次数: 262
  • 引用次数: 0
历史
  • 收稿日期:2024-01-25
  • 最后修改日期:2024-05-21
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码