不同致病力青枯雷尔氏菌的甲基化敏感扩增多态分析
作者:
基金项目:

福建省公益类科研院所基本专项(2021R1034003,2021R1034005)


Methylation sensitive amplification polymorphism of Ralstonia solanacearum strains with different pathogenicity
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 探究不同致病力青枯雷尔氏菌连续传代过程中致病力、DNA甲基化水平与模式的变化。【方法】 将不同致病力青枯雷尔氏菌连续传代培养50次,通过弱化指数(attenuated index, AI)和接种番茄盆栽苗,分析其F1和F50菌株致病力变化;采用甲基化敏感扩增多态(methylation sensitive amplification polymorphism, MSAP)技术分析不同致病力和传代数青枯雷尔氏菌DNA甲基化水平变化;利用荧光定量PCR (real-time fluorescent quantitative PCR, qRT-PCR)技术分析DNA甲基化和去甲基化相关酶基因的表达量变化。【结果】 经连续传代50次后,强致病力菌株FJAT15304和过渡型菌株FJAT445均变为无致病力菌株,而无致病力菌株FJAT15249仍然保持其无致病力特性。MSAP分析显示,与F1菌株相比,强致病力菌株传代50次的FJAT15304.F50和致病力衰退型菌株传代50次的FJAT445.F50的总甲基化率分别增加7.82%和38.22%;无致病力菌株FJAT15249的F1和F50的总甲基化率均为33.33%;强致病力和过渡型菌株的主要甲基化模式为全甲基化,其全甲基化率高于半甲基化率,而所有无致病力菌株主要甲基化模式为半甲基化。qRT-PCR分析表明,强致病力和过渡型菌株连续传代致病力衰退菌株的DNA甲基化酶相关基因damdcmftsZ表达量显著增加,而去甲基化酶相关基因alkB表达量显著降低,推测DNA甲基化水平变化在致病力衰退过程起重要作用。【结论】 青枯雷尔氏菌连续传代出现致病力衰退现象,这种致病力衰退可能与DNA甲基化水平有关。本研究为利用无致病力菌株防治青枯病害提供依据。

    Abstract:

    [Objective] To investigate the changes of pathogenicity and DNA methylation levels and patterns of Ralstonia solanacearum strains with different pathogenicity during consecutive subculture. [Methods] R. solanacearum strains with different pathogenicity were consecutively subcultured for 50 passages. The pathogenicity of different strains was determined by the attenuated index (AI) method and the pot experiments. Methylation sensitive amplification polymorphism (MSAP) analysis was performed to profile the DNA methylation levels of different strains. Moreover, the relative expression levels of genes related to methylases and demethylases were determined by real-time fluorescent quantitative PCR (qRT-PCR). [Results] After 50 passages, both of the virulent strain FJAT15304 and the intermediate strain FJAT445 evolved into avirulent strains, while the avirulent strain FJAT15249 remained to be avirulent. Compared with F1 strains, FJAT15304.F50 and FJAT445.F50 showed the total methylation rates increasing by 7.82% and 38.22%, respectively. However, both of FJAT15249.F1 and FJAT15249.F50 had the total methylation rate of 33.33%. Full methylation was the main pattern in the virulent and intermediate strains, while hemi-methylation was the main pattern in all the avirulent strains. Compared with F1 strains, strains FJAT15304.F50 and FJAT445.F50 showed up-regulated expression of three methylase-related genes dam, dcm, and ftsZ and down-regulated expression of demethylase-related gene alkB, which suggested that the change of DNA methylation might play a key role in the debilitation of pathogenicity. [Conclusion] The pathogenicity of R. solanacearum attenuates during the consecutive subculture, which might be related to the level of DNA methylation. The findings provide a scientific basis for the application of avirulent strains in the biocontrol of bacterial wilt.

    参考文献
    [1] HAYWARD AC. Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum[J]. Annual Review of Phytopathology, 1991, 29: 65-87.
    [2] HU QL, TAN L, GU SS, XIAO YS, XIONG XY, ZENG WA, FENG K, WEI Z, DENG Y. Network analysis infers the wilt pathogen invasion associated with non-detrimental bacteria[J]. ppj Biofilms and Microbiomes, 2020, 6(1): 8.
    [3] GENIN S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum[J]. The New Phytologist, 2010, 187(4): 920-928.
    [4] MANSFIELD J, GENIN S, MAGORI S, CITOVSKY V, SRIARIYANUM M, RONALD P, DOW M, VERDIER V, BEER SV, MACHADO MA, TOTH I, SALMOND G, FOSTER GD. Top 10 plant pathogenic bacteria in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(6): 614-629.
    [5] ETMINANI F, YOUSEFVAND M, HARIGHI B. Phylogenetic analysis and molecular signatures specific to the Ralstonia solanacearum species complex[J]. European Journal of Plant Pathology, 2020, 158(1): 261-279.
    [6] MOREL A, PEETERS N, VAILLEAU F, BARBERIS P, JIANG GF, BERTHOMÉ R, GUIDOT A. Plant pathogenicity phenotyping of Ralstonia solanacearum strains[J]. Methods in Molecular Biology, 2018, 1734: 223-239.
    [7] PRIOR P, AILLOUD F, DALSING BL, REMENANT B, SANCHEZ B, ALLEN C. Genomic and proteomic evidence supporting the division of the plant pathogen Ralstonia solanacearum into three species[J]. BMC Genomics, 2016, 17: 90.
    [8] 张长龄, 华静月, 王东, 郑宏启. 青枯菌的菌种保存[J]. 植物保护, 1993, (1): 39-40. ZHANG CL, HUA JY, WANG D, ZHENG HQ. Conservation of Ralstonia solanacearum strains[J]. Plant Protection, 1993, (1): 39-40(in Chinese).
    [9] ZHENG XF, WANG ZR, CHEN MC, CHEN Z, WANG JP, ZHU YJ. Genetic stability of virulent, intermediate, and avirulent strains of Ralstonia solanacearum after extensive, consecutive subculturing[J]. Biological Control, 2022, 167: 104845.
    [10] KANDA A, YASUKOHCHI M, OHNISHI K, KIBA A, OKUNO T, HIKICHI Y. Ectopic expression of Ralstonia solanacearum effector protein PopA early in invasion results in loss of virulence[J]. Molecular Plant-Microbe Interactions, 2003, 16(5): 447-455.
    [11] ROBERTSON AE, WECHTER WP, DENNY TP, FORTNUM BA, KLUEPFEL DA. Relationship between avirulence gene (avrA) diversity in Ralstonia solanacearum and bacterial wilt incidence[J]. Molecular Plant-Microbe Interactions, 2004, 17(12): 1376-1384.
    [12] 张文婷, 姚玉峰. 细菌DNA甲基化研究进展[J]. 生物化学与生物物理进展, 2018, 45(10): 1026-1038. ZHANG WT, YAO YF. Research progress on bacterial DNA methylation[J]. Progress in Biochemistry and Biophysics, 2018, 45(10): 1026-1038(in Chinese).
    [13] REIK W. Stability and flexibility of epigenetic gene regulation in mammalian development[J]. Nature, 2007, 447: 425-432.
    [14] 童童, 王连荣. 甲基化修饰在细菌表观调控中的功能[J]. 微生物学报, 2017, 57(11): 1688-1697. TONG T, WANG LR. Epigenetic regulation role of DNA methylation in bacteria[J]. Acta Microbiologica Sinica, 2017, 57(11): 1688-1697(in Chinese).
    [15] OLIVEIRA PH, FANG G. Conserved DNA methyltransferases: a window into fundamental mechanisms of epigenetic regulation in bacteria[J]. Trends in Microbiology, 2021, 29(1): 28-40.
    [16] 方和事, 吴杭, 张部昌. 细菌中DNA甲基转移酶的生物学功能及其作用机制[J]. 生命的化学, 2020, 40(12): 2184-2192. FANG HS, WU H, ZHANG BC. DNA methyltransferase in bacteria: biological function and mechanism[J]. Chemistry of Life, 2020, 40(12): 2184-2192(in Chinese).
    [17] MARINUS MG, CASADESUS J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more[J]. FEMS Microbiology Reviews, 2009, 33(3): 488-503.
    [18] GONZALEZ D, KOZDON JB, McADAMS HH, SHAPIRO L, COLLIER J. The functions of DNA methylation by CcrM in Caulobacter crescentus: a global approach[J]. Nucleic Acids Research, 2014, 42(6): 3720-3735.
    [19] ZHANGCZ, SAMANTA D, LU HQ, BULLEN JW, ZHANG HM, CHEN I, HE XS, SEMENZA GL. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(14): E2047-E2056.
    [20] ZHOU B, HAN ZF. Crystallization and preliminary X-ray diffraction of the RNA demethylase ALKBH5[J]. Acta Crystallographica Section F, Structural Biology and Crystallization Communications, 2013, 69(Pt 11): 1231-1234.
    [21] 李卫国, 常天俊, 龚红梅. MSAP技术及其在植物遗传学研究中的应用[J]. 生物技术, 2008, 18(1): 83-87. LI WG, CHANG TJ, GONG HM. Methylation-sensitive amplified polymorphism and its application to plant genetics[J]. Biotechnology, 2008, 18(1): 83-87(in Chinese).
    [22] KELMAN A. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium[J]. Phytopathology, 1954, 44: 693-695.
    [23] 车建美, 蓝江林, 刘波. 转绿色荧光蛋白基因的青枯雷尔氏菌生物学特性[J]. 中国农业科学, 2008, 41(11): 3626-3635.
    [24] 刘波, 林营志, 朱育菁, 葛慈斌, 曹宜. 生防菌对青枯雷尔氏菌的致弱特性[J]. 农业生物技术学报, 2004, 12(3): 322-329. LIU B, LIN YZ, ZHU YJ, GE CB, CAO Y. Attenuation characteristics of bacterial-wilt-disease biocontrol strain anti-8098A (Bacillus cereus) to Ralstonia solanacearum[J]. Journal of Agricultural Biotechnology, 2004, 12(3): 322-329(in Chinese).
    [25] MANOHARLAL R, SAIPRASAD GVS, ULLAGADDI C, KOVAŘÍK A. Gibberellin A3 as an epigenetic determinant of global DNA hypo-methylation in tobacco[J]. Biologia Plantarum, 2018, 62(1): 11-23.
    [26] WANG JN, RAZA W, JIANG GF, YI Z, FIELDS B, GREENROD S, FRIMAN VP, JOUSSET A, SHEN QR, WEI Z. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs[J]. The ISME Journal, 2023, 17(3): 443-452.
    [27] 刘颖. 青枯雷尔氏菌的遗传进化及其响应酸与低温胁迫的分子机制研究[D]. 重庆: 西南大学博士学位论文, 2020. LIU Y. Genetic evolution of Ralstonia solanacearum and its molecular mechanism in response to acid and low temperature stress[D]. Chongqing: Doctoral Dissertation of Southwest University, 2020(in Chinese).
    [28] GUIDOT A, JIANG W, FERDY JB, THÉBAUD C, BARBERIS P, GOUZY J, GENIN S. Multihost experimental evolution of the pathogen Ralstonia solanacearum unveils genes involved in adaptation to plants[J]. Molecular Biology and Evolution, 2014, 31(11): 2913-2928.
    [29] WANG XF, LIN YZ, LI Q, LIU Q, ZHAO WW, DU C, CHEN J, WANG XJ, ZHOU JH. Genetic evolution during the development of an attenuated EIAV vaccine[J]. Retrovirology, 2016, 13: 9.
    [30] CASADESÚS J, LOW D. Epigenetic gene regulation in the bacterial world[J]. Microbiology and Molecular Biology Reviews, 2006, 70(3): 830-856.
    [31] BLOW MJ, CLARK TA, DAUM CG, DEUTSCHBAUER AM, FOMENKOV A, FRIES R, FROULA J, KANG DD, MALMSTROM RR, MORGAN RD, POSFAI J, SINGH K, VISEL A, WETMORE K, ZHAO ZY, RUBIN EM, KORLACH J, PENNACCHIO LA, ROBERTS RJ. The epigenomic landscape of prokaryotes[J]. PLoS Genetics, 2016, 12(2): e1005854.
    [32] KUMAR S, KARMAKAR BC, NAGARAJAN D, MUKHOPADHYAY AK, MORGAN RD, RAO DN. N4-cytosine DNA methylation regulates transcription and pathogenesis in Helicobacter pylori[J]. Nucleic Acids Research, 2018, 46(7): 3429-3445.
    [33] KUMAR R, MUKHOPADHYAY AK, GHOSH P, RAO DN. Comparative transcriptomics of H. pylori strains AM5, SS1 and their hpyAVIBM deletion mutants: possible roles of cytosine methylation[J]. PLoS One, 2012, 7(8): e42303.
    [34] NYE TM, JACOB KM, HOLLEY EK, NEVAREZ JM, DAWID S, SIMMONS LA, JR WATSON ME. DNA methylation from a type I restriction modification system influences gene expression and virulence in Streptococcus pyogenes[J]. PLoS Pathogens, 2019, 15(6): e1007841.
    [35] BALE A, D’ALARCAO M, MARINUS MG. Characterization of DNA adenine methylation mutants of Escherichia coli K12[J]. Mutation Research, 1979, 59(2): 157-165.
    [36] ROBBINS-MANKE JL, ZDRAVESKI ZZ, MARINUS M, ESSIGMANN JM. Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase-and mismatch repair-deficient Escherichia coli[J]. Journal of Bacteriology, 2005, 187(20): 7027-7037.
    [37] WION D, CASADESÚS J. N6-methyl-adenine: an epigenetic signal for DNA-protein interactions[J]. Nature Reviews Microbiology, 2006, 4: 183-192.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑雪芳,舒江霞,林莹,王阶平,陈燕萍,陈梅春,陈峥,刘波. 不同致病力青枯雷尔氏菌的甲基化敏感扩增多态分析[J]. 微生物学报, 2024, 64(8): 2986-2997

复制
分享
文章指标
  • 点击次数:65
  • 下载次数: 331
  • HTML阅读次数: 244
  • 引用次数: 0
历史
  • 收稿日期:2024-01-26
  • 最后修改日期:2024-03-05
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码