鄱阳湖湿地不同水期微塑料表面细菌群落分布特征
作者:
基金项目:

国家自然科学基金(42007389,32060275)


Distribution characteristics of bacterial communities on microplastic surface in wet and dry seasons in Poyang Lake wetland
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [65]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 微塑料(粒径<5 mm)具有疏水表面、吸附能力强、难降解等特征,可长期留存于环境中,并且易被微生物所定殖,对生态系统存有潜在风险。本研究以鄱阳湖湿地微塑料表面微生物为研究对象,探究不同水期微塑料表面细菌群落结构分布特征。【方法】 分别在丰水期和枯水期采集湿地水体、沉积物及沉积物中微塑料样品。借助16S rRNA基因高通量测序技术,对样品的细菌多样性及群落结构展开分析。【结果】 不同水期环境中的细菌丰富度和多样性皆高于微塑料表面。丰水期水体和沉积物细菌群落结构相似,环境与微塑料表面细菌结构差别较大,枯水期水体和沉积物以及微塑料表面细菌群落结构差别均较大。环境样品中的细菌门水平上以变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)为主,而丰水期微塑料表面细菌群落主要包括变形菌门、拟杆菌门、厚壁菌门(Firmicutes),枯水期微塑料表面细菌群落与环境中相似。微塑料表面细菌群落中假单胞菌属(Pseudomonas)相对丰度比环境中高。丰水期和枯水期细菌群的关键种中大部分属于变形菌门,包括鞘氨醇单胞属(Sphingomonas)等。【结论】 本研究揭示了鄱阳湖湿地不同水期环境中以及微塑料表面细菌群落结构差异,研究可以丰富和完善我国湖泊湿地中微塑料的相关知识,为湖泊环境治理与管控提供理论支持与依据,以便对鄱阳湖湿地进行生态系统管理。

    Abstract:

    [Objective] Microplastics (particle size<5 mm) with hydrophobic surface, strong adsorption capacity, and difficult degradation can be retained in the environment for a long time and easily colonized by microorganisms, which poses a potential risk to the ecosystem. To study the distribution characteristics of microorganisms on the surface of microplastics in the wetland of Poyang Lake in wet and dry seasons. [Methods] Samples of water, sediments, and microplastics in sediments were collected from the wetland during the wet and dry seasons. The bacterial diversity and community structure in the samples were analyzed by high-throughput sequencing of the 16S rRNA gene. [Results] The richness and diversity of bacteria in the environment were higher than those on the microplastic surface in wet and dry seasons. During the wet season, the bacterial community structure was similar between the water and sediment samples and had large differences between the environment and the microplastic surface. During the dry season, the bacterial community structure was different among different samples. At the phylum level, the bacteria in the environment were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria, while the bacteria on the microplastic surface during the wet season mainly included Proteobacteria, Bacteroidetes, and Firmicutes. The dominant bacterial phyla on the microplastic surface were similar to those in the environment during the dry season. The relative abundance of Pseudomonas on the microplastic surface was higher than that in the environment. Most of the keystone bacterial species in the wet and dry seasons belonged to Proteobacteria, including Sphingomonas. [Conclusion] This study reveals the differences in the bacterial community structure in the environment and on the microplastic surface in the Poyang Lake wetland in wet and dry seasons. The findings can enrich the knowledge about microplastics in lake wetlands in China and provide a theoretical basis for the management of lake environments including the Poyang Lake wetland.

    参考文献
    [1] 李文华, 简敏菲, 刘淑丽, 江玉梅, 邓艳彬, 朱琳. 鄱阳湖湖口-长江段沉积物中微塑料与重金属污染物的赋存关系[J]. 环境科学, 2020, 41(1): 242-252. LI WH, JIAN MF, LIU SL, JIANG YM, DENG YB, ZHU L. Occurrence relationship between microplastics and heavy metals pollutants in the estuarine sediments of Poyang Lake and the Yangtze River[J]. Environmental Science, 2020, 41(1): 242-252(in Chinese).
    [2] 李大圳, 章宇晴, 付茜茜, 冯丹, 赵媛媛, 俞花美, 邓惠, 葛成军. 海洋环境暴露下生物膜对微塑料的理化性质和环境行为影响研究进展[J]. 生态毒理学报, 2022, 17(3): 339-353. LI DZ, ZHANG YQ, FU QQ, FENG D, ZHAO YY, YU HM, DENG H, GE CJ. Research progress on the physical and chemical properties and environmental behavior of microplastics exposed to marine environment by biofilm[J]. Journal of Ecotoxicology, 2022, 17(3): 339-353(in Chinese).
    [3] YOSHIDA S, HIRAGA K, TAKEHANA T, TANIGUCHI I, YAMAJI H, MAEDA Y, TOYOHARA K, MIYAMOTO K, KIMURA Y, ODA K. A bacterium that degrades and assimilates poly(ethylene terephthalate)[J]. Science, 2016, 351(6278): 1196-1199.
    [4] 刘沙沙, 秦建桥, 吴贤格. 微塑料和菲对土壤化学性质、酶活性及微生物群落的影响[J]. 环境科学, 2024, 45(1): 496-507. LIU SS, QIN JQ, WU XG. The effects of microplastics and phenanthrene on soil chemical properties, enzyme activity, and microbial community[J]. Environmental Science, 2024, 45(1): 496-507(in Chinese).
    [5] JIAN MF, ZHANG Y, YANG WJ, ZHOU LY, LIU SL, XU EG. Occurrence and distribution of microplastics in China’s largest freshwater lake system[J]. Chemosphere, 2020, 261: 128186.
    [6] HEINDLER FM, ALAJMI F, HUERLIMANN R, ZENG CS, NEWMAN SJ, VAMVOUNIS G, van HERWERDEN L. Toxic effects of polyethylene terephthalate microparticles and di(2-ethylhexyl) phthalate on the calanoid copepod, Parvocalanus crassirostris[J]. Ecotoxicology and Environmental Safety, 2017, 141: 298-305.
    [7] LU Y, LI MC, LEE J, LIU CZ, MEI CT. Microplastic remediation technologies in water and wastewater treatment processes: current status and future perspectives[J]. The Science of the Total Environment, 2023, 868: 161618.
    [8] 李大圳, 章宇晴, 付茜茜, 陈海鹰, 邓惠, 葛成军. 红树林退化对微塑料表面细菌群落特征的影响[J]. 农业环境科学学报, 2023, 42(2): 299-309. LI DZ, ZHANG YQ, FU QQ, CHEN HY, DENG H, GE CJ. Effects of mangrove degradation on the characteristics of bacterial communities colonizing microplastics[J]. Journal of Agro-Environment Science, 2023, 42(2): 299-309(in Chinese).
    [9] 郭冰林, 丰晨晨, 陈悦, 林迪, 李岚涛. 聚苯乙烯微塑料对小白菜生长、生理生化及冠层温度特性的影响[J]. 环境科学, 2023, 44(9): 5080-5091. GUO BL, FENG CC, CHEN Y, LIN D, LI LT. Effects of polystyrene microplastics on growth, physiology, biochemistry, and canopy temperature characteristics of Chinese cabbage pakchoi (Brassica chinensis L.)[J]. Environmental Science, 2023, 44(9): 5080-5091(in Chinese).
    [10] 董旭日, 朱礼鑫, 徐佳奕, 李道季. 微塑料附着微生物研究进展[J]. 微生物学杂志, 2022, 42(2): 81-87. DONG XR, ZHU LX, XU JY, LI DJ. Advances in microorganism attached to microplastics[J]. Journal of Microbiology, 2022, 42(2): 81-87(in Chinese).
    [11] VIRŠEK MK, LOVŠIN MN, KOREN Š, KRŽAN A, PETERLIN M. Microplastics as a vector for the transport of the bacterial fish pathogen species Aeromonas salmonicida[J]. Marine Pollution Bulletin, 2017, 125(1/2): 301-309.
    [12] WANG YJ, ZHONG Z, CHEN X, SOKOLOVA I, MA LK, YANG QK, QIU KC, KHAN FU, TU ZH, GUO BY, HUANG W. Microplastic pollution and ecological risk assessment of Yueqing Bay affected by intensive human activities[J]. Journal of Hazardous Materials, 2024, 461: 132603.
    [13] KUMAR V, UMESH M, CHAKRABORTY P, SHARMA P, SAROJINI S, BASHEER T, KAUR K, PASRIJA R, BARCELO D. Origin, ecotoxicity, and analytical methods for microplastic detection in aquatic systems[J]. TrAC Trends in Analytical Chemistry, 2024, 170: 117392.
    [14] SCHMID C, COZZARINI L, ZAMBELLO E. Microplastic’s story[J]. Marine Pollution Bulletin, 2021, 162: 111820.
    [15] JENNER LC, ROTCHELL JM, BENNETT RT, COWEN M, TENTZERIS V, SADOFSKY LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy[J]. Science of the Total Environment, 2022, 831: 154907.
    [16] ALARIF WM, BUDIYANTO F, BAWAKID NO, ALSHEHRI ND, AL-FARAWATI RK, SHABAN YA, ALI AM. The occurrence of microplastic in marine ecosystems in the Middle East: a review[J]. Regional Studies in Marine Science, 2023, 67: 103208.
    [17] 弓晓峰, 陈春丽, 周文斌, 简敏菲, 张振辉. 鄱阳湖底泥中重金属污染现状评价[J]. 环境科学, 2006, 27(4): 732-736. GONG XF, CHEN CL, ZHOU WB, JIAN MF, ZHANG ZH. Assessment on heavy metal pollution in the sediment of Poyang Lake[J]. Environmental Science, 2006, 27(4): 732-736(in Chinese).
    [18] 赖政, 盛颖, 肖力婷, 杨慧林, 阳文静, 简敏菲. 鄱阳湖越冬白鹤肠道微生物群落结构及功能预测分析[J]. 微生物学报, 2023, 63(11): 4302-4314. LAI Z, SHENG Y, XIAO LT, YANG HL, YANG WJ, JIAN MF. Analysis of gut microbial community structure and functional prediction of overwintering white cranes in Poyang Lake[J]. Acta Microbiologica Sinica, 2023, 63(11): 4302-4314(in Chinese).
    [19] XIONG K, KONG FB. The analysis of farmers’ willingness to accept and its influencing factors for ecological compensation of Poyang Lake wetland[J]. Procedia Engineering, 2017, 174: 835-842.
    [20] 曹思佳, 李云良, 陈静, 姚静, 赵贵章, 李志萍. 2022年鄱阳湖极端干旱对洪泛区地下水文情势的影响[J]. 中国环境科学, 2023, 43(12): 6601-6610. CAO SJ, LI YL, CHEN J, YAO J, ZHAO GZ, LI ZP. Influence of extreme drought in 2022 on groundwater hydrological regime in the Poyang Lake floodplain area[J]. China Environmental Science, 2023, 43(12): 6601-6610(in Chinese).
    [21] 江为群, 刘淑丽, 简敏菲, 胡启武. 鄱阳湖主要入湖段典型底栖动物体内微塑料累积特征[J]. 生态学杂志, 2020, 39(4): 1273-1280. JIANG WQ, LIU SL, JIAN MF, HU QW. Deposition characteristics of microplastics in benthic animals from the main estuaries of Poyang Lake[J]. Chinese Journal of Ecology, 2020, 39(4): 1273-1280(in Chinese).
    [22] 张龙飞, 刘玉环, 阮榕生, 赵蓝天, 王允圃, 张琦, 曹雷鹏, 崔宪, 巫小丹, 郑洪立. 微塑料的形成机制及其环境分布特征研究进展[J]. 环境科学, 2023, 44(8): 4728-4741. ZHANG LF, LIU YH, RUAN RS, ZHAO LT, WANG YP, ZHANG Q, CAO LP, CUI X, WU XD, ZHENG HL. Research progress on distribution characteristics and formation mechanisms of microplastics in the environment[J]. Environmental Science, 2023, 44(8): 4728-4741(in Chinese).
    [23] TIWARI N, SANTHIYA D, SHARMA JG. Significance of landfill microbial communities in biodegradation of polyethylene and nylon 6,6 microplastics[J]. Journal of Hazardous Materials, 2024, 462: 132786.
    [24] SUN XL, XIANG H, XIONG HQ, FANG YC, WANG Y. Bioremediation of microplastics in freshwater environments: a systematic review of biofilm culture, degradation mechanisms, and analytical methods[J]. The Science of the Total Environment, 2023, 863: 160953.
    [25] LI YL, ZHANG Q, YAO J, WERNER AD, LI XH. Hydrodynamic and hydrological modeling of the Poyang Lake catchment system in China[J]. Journal of Hydrologic Engineering, 2014, 19(3): 607-616.
    [26] 刘淑丽, 胡启武, 杨慧林, 邹龙, 简敏菲. 鄱阳湖南矶山湿地微塑料表面微生物分布特征[J]. 环境科学学报, 2022, 42(6): 206-214. LIU SL, HU QW, YANG HL, ZOU L, JIAN MF. Distribution characteristics of microorganisms on microplastic surface in Nanjishan wetland of Poyang Lake[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 206-214(in Chinese).
    [27] DEBROAS D, MONE A, TER HALLE A. Plastics in the North Atlantic garbage patch: a boat-microbe for hitchhikers and plastic degraders[J]. The Science of the Total Environment, 2017, 599/600: 1222-1232.
    [28] HUSE SM, MARK WELCH DB, VOORHIS A, SHIPUNOVA A, MORRISON HG, EREN AM, SOGIN ML. VAMPS: a website for visualization and analysis of microbial population structures[J]. BMC Bioinformatics, 2014, 15: 41.
    [29] LIU HY, YUE L, ZHAO YY, LI JT, FU Y, DENG H, FENG D, LI QP, YU HM, ZHANG Y, GE CJ. Changes in bacterial community structures in soil caused by migration and aging of microplastics[J]. The Science of the Total Environment, 2022, 848: 157790.
    [30] 赵俊凯, 陈旭, 胡婷婷, 廖轶颖, 邹龙, 简敏菲, 刘淑丽. 鄱阳湖湿地淹水与非淹水状态下微塑料表面细菌群落分布特征[J]. 环境科学, 2023, 44(9): 5063-5070. ZHAO JK, CHEN X, HU TT, LIAO YY, ZOU L, JIAN MF, LIU SL. Distribution characteristics of microplastic surface bacterial communities under flooded and non-flooded conditions in nanjishan wetland of Poyang Lake[J]. Environmental Science, 2023, 44(9): 5063-5070(in Chinese).
    [31] WU N, ZHANG Y, ZHAO Z, HE JH, LI WJ, LI JF, XU WA, MA YZ, NIU ZG. Colonization characteristics of bacterial communities on microplastics compared with ambient environments (water and sediment) in Haihe Estuary[J]. The Science of the Total Environment, 2020, 708: 134876.
    [32] HOELLEIN TJ, McCORMICK AR, HITTIE J, LONDON MG, SCOTT JW, KELLY JJ. Longitudinal patterns of microplastic concentration and bacterial assemblages in surface and benthic habitats of an urban river[J]. Freshwater Science, 2017, 36(3): 491-507.
    [33] 王钰淇, 王海迪, 晏振凯, 程金星, 王庆波, 赵长伟. 淡水中微塑料的污染现状及去除技术研究进展[J]. 现代化工, 2023, 43(8): 1-5, 10. WANG YQ, WANG HD, YAN ZK, CHENG JX, WANG QB, ZHAO CW. Research progress on pollution status and removal technology of microplastics in freshwater[J]. Modern Chemical Industry, 2023, 43(8): 1-5, 10(in Chinese).
    [34] YANG Q, LI DW, CHEN W, ZHU LM, ZOU X, HU L, YUAN YJ, HE S, SHI F. Dynamics of bacterioplankton communities during wet and dry seasons in the Danjiangkou Reservoir in Hubei, China[J]. Life (Basel, Switzerland), 2023, 13(5): 1206.
    [35] SONG HY, XIAO SS, ZHOU XH, LI YN, TAO MM, WU F, XU XH. Temporal dynamics of bacterial colonization on five types of microplastics in a freshwater lake[J]. The Science of the Total Environment, 2024, 913: 169697.
    [36] SUN XM, CHEN BJ, XIA B, LI QF, ZHU L, ZHAO XG, GAO YP, QU KM. Impact of mariculture-derived microplastics on bacterial biofilm formation and their potential threat to mariculture: a case in situ study on the Sungo Bay, China[J]. Environmental Pollution, 2020, 262: 114336.
    [37] YANG YY, LIU WZ, ZHANG ZL, GROSSART HP, GADD GM. Microplastics provide new microbial niches in aquatic environments[J]. Applied Microbiology and Biotechnology, 2020, 104(15): 6501-6511.
    [38] YANG GQ, GONG MT, MAI L, ZHUANG L, ZENG EY. Diversity and structure of microbial biofilms on microplastics in riverine waters of the Pearl River Delta, China[J]. Chemosphere, 2021, 272: 129870.
    [39] McCORMICK AR, HOELLEIN TJ, LONDON MG, HITTIE J, SCOTT JW, KELLY JJ. Microplastic in surface waters of urban rivers: concentration, sources, and associated bacterial assemblages[J]. Ecosphere, 2016, 7(11): e01556.
    [40] EMADIAN SM, ONAY TT, DEMIREL B. Biodegradation of bioplastics in natural environments[J]. Waste Management, 2017, 59: 526-536.
    [41] ZHAI XY, ZHANG XH, YU M. Microbial colonization and degradation of marine microplastics in the plastisphere: a review[J]. Frontiers in Microbiology, 2023, 14: 1127308.
    [42] DELACUVELLERIE A, CYRIAQUE V, GOBERT S, BENALI S, WATTIEZ R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation[J]. Journal of Hazardous Materials, 2019, 380: 120899.
    [43] HADAD D, GERESH S, SIVAN A. Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis[J]. Journal of Applied Microbiology, 2005, 98(5): 1093-1100.
    [44] 杨恩东, 崔丹曦, 汪维云. 马赛菌属细菌研究进展[J]. 微生物学通报, 2019, 46(6): 1537-1548. YANG ED, CUI DX, WANG WY. Research progress on the genus Massilia[J]. Microbiology China, 2019, 46(6): 1537-1548(in Chinese).
    [45] 李肸, 张晓华, 于敏. 青岛近海样品中聚丙烯微塑料降解微生物的富集培养及活性研究[J]. 中国海洋大学学报(自然科学版), 2021, 51(10): 60-70. LI X, ZHANG XH, YU M. Study on the enrichment and activity of polypropylene microplastics degrading microorganisms[J]. Periodical of Ocean University of China, 2021, 51(10): 60-70(in Chinese).
    [46] AUTA HS, EMENIKE CU, JAYANTHI B, FAUZIAH SH. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Marine Pollution Bulletin, 2018, 127: 15-21.
    [47] WANG J, QIN X, GUO JB, JIA WQ, WANG Q, ZHANG MJ, HUANG Y. Evidence of selective enrichment of bacterial assemblages and antibiotic resistant genes by microplastics in urban rivers[J]. Water Research, 2020, 183: 116113.
    [48] 彭子淇, 李佳岭, 邱丽婷, 舒冉君, 佘婷婷. 我国三大水系环境微塑料污染现状及其表面微生物群落特征的研究进展[J]. 微生物学报, 2023, 63(6): 2261-2275. PENG ZQ, LI JL, QIU LT, SHU RJ, YU TT. Research progress on microplastic pollution status and surface microbial community characteristics in the three major water systems in China [J]. Acta Microbiologica Sinica, 2023, 63(6): 2261-2275
    [49] LEE JW, NAM JH, KIM YH, LEE KH, LEE DH. Bacterial communities in the initial stage of marine biofilm formation on artificial surfaces[J]. The Journal of Microbiology, 2008, 46(2): 174-182.
    [50] YOON MJ, JEON HJ, KIM MN. Biodegradation of polyethylene by a soil bacterium and AlkB cloned recombinant cell[J]. Journal of Bioremediation & Biodegradation, 2012, 3(4): 1-8.
    [51] WILKES RA, ARISTILDE L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp.: capabilities and challenges[J]. Journal of Applied Microbiology, 2017, 123(3): 582-593.
    [52] XIE HF, CHEN JJ, FENG LM, HE L, ZHOU CX, HONG PZ, SUN SL, ZHAO H, LIANG YQ, REN L, ZHANG YQ, LI CY. Chemotaxis-selective colonization of mangrove rhizosphere microbes on nine different microplastics[J]. The Science of the Total Environment, 2021, 752: 142223.
    [53] TISCHLER D, EULBERG D, LAKNER S, KASCHABEK SR, van BERKEL WJH, SCHLÖMANN M. Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP[J]. Journal of Bacteriology, 2009, 191(15): 4996-5009.
    [54] 刘辉, 韦璐璐, 朱龙发, 韦豪, 白云霞, 刘小玲, 李树波. 鞘氨醇单胞菌的研究进展[J]. 微生物学通报, 2023, 50(6): 2738-2752. LIU H, WEI LL, ZHU LF, WEI H, BAI YX, LIU XL, LI SB. Research progress of Sphingomonas[J]. Microbiology China, 2023, 50(6): 2738-2752(in Chinese).
    [55] 张立志, 余思彤, 袁欣, 王钰, 宋兆健, 包永明, 张旭旺. 丛毛单胞菌对邻甲酚及对甲酚的降解特性[J]. 环境污染与防治, 2020, 42(7): 820-825, 832. ZHANG LZ, YU ST, YUAN X, WANG Y, SONG ZJ, BAO YM, ZHANG XW. Degradation characteristics of o-cresol and p-cresol by Comamonas sp.[J]. Environmental Pollution & Control, 2020, 42(7): 820-825, 832(in Chinese).
    [56] 杨中华, 朱政涛, 槐文信, 白凤朋. 鄱阳湖水利调控对湖区典型丰枯水年水动力水质影响研究[J]. 水利学报, 2018, 49(2): 156-167. YANG ZH, ZHU ZT, HUAI WX, BAI FP. A Study on the Impact of Water Conservancy Regulation in Poyang Lake on the Hydrodynamic and Water Quality of Typical Flood and Drought Years in the Lake Area[J]. Journal of Water Resources, 2018, 49(2): 156-167(in Chinese).
    [57] 闵骞, 占腊生. 1952–2011年鄱阳湖枯水变化分析[J]. 湖泊科学, 2012, 24(5): 675-678. MIN Q, ZHAN LS. Characteristics of low-water level changes in Lake Poyang during 1952–2011[J]. Journal of Lake Sciences, 2012, 24(5): 675-678(in Chinese).
    [58] 李世勤, 闵骞, 谭国良, 潘汉明, 陈家霖. 鄱阳湖2006年枯水特征及其成因研究[J]. 水文, 2008, 28(6): 73-76. LI SQ, MIN Q, TAN GL, PAN HM, CHEN JL. Cause analysis of low water characteristics of Poyang Lake in 2006[J]. Journal of China Hydrology, 2008, 28(6): 73-76(in Chinese).
    [59] 王丹, 张双虎, 王国利, 王浩. 鄱阳湖枯水期水位变化及其影响因素量化分析[J]. 水力发电学报, 2020, 39(3): 1-10. WANG D, ZHANG SH, WANG GL, WANG H. Quantitative analysis of water level changes and influencing factors during the dry season of Poyang Lake[J]. Journal of Hydroelectric Power, 2020, 39(3): 1-10(in Chinese).
    [60] CARTER DO, YELLOWLEES D, TIBBETT M. Cadaver decomposition in terrestrial ecosystems[J]. The Science of Nature-Naturwissenschaften, 2007, 94(1): 12-24.
    [61] LIU ML, WANG C, ZHU B. Independent and combined effects of microplastics pollution and drought on soil bacterial community[J]. The Science of the Total Environment, 2024, 913: 169749.
    [62] LIU ML, WANG C, ZHU B. Drought alleviates the negative effects of microplastics on soil micro-food web complexity and stability[J]. Environmental Science & Technology, 2023, 57(30): 11206-11217.
    [63] LOZANO YM, AGUILAR-TRIGUEROS CA, ONANDIA G, MAAß S, ZHAO TT, RILLIG MC. Effects of microplastics and drought on soil ecosystem functions and multifunctionality[J]. Journal of Applied Ecology, 2021, 58(5): 988-996.
    [64] XU CY, HU C, LU JW, YANG T, SHEN CS, LI F, WANG J. Lake plastisphere as a new biotope in the Anthropocene: potential pathogen colonization and distinct microbial functionality[J]. Journal of Hazardous Materials, 2024, 461: 132693.
    [65] FENG LM, HE L, JIANG SQ, CHEN JJ, ZHOU CX, QIAN ZJ, HONG PZ, SUN SL, LI CY. Investigating the composition and distribution of microplastics surface biofilms in coral areas[J]. Chemosphere, 2020, 252: 126565.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵俊凯,俞锦丽,罗思琦,简敏菲,胡启武,刘淑丽. 鄱阳湖湿地不同水期微塑料表面细菌群落分布特征[J]. 微生物学报, 2024, 64(8): 3030-3046

复制
分享
文章指标
  • 点击次数:241
  • 下载次数: 299
  • HTML阅读次数: 392
  • 引用次数: 0
历史
  • 收稿日期:2024-02-01
  • 最后修改日期:2024-05-22
  • 在线发布日期: 2024-08-06
  • 出版日期: 2024-08-04
文章二维码