母婴群体乳杆菌组成及优势种副干酪乳酪杆菌的遗传差异性
作者:
基金项目:

国家自然科学基金-新疆联合基金重点项目(U1903205);石河子市财政科技项目(2020PT01);新疆生产建设 兵团科技创新团队(2020CB007)


community composition of Lactobacillus spp. and genetic differences of the dominant species Lacticaseibacillus paracasei in mother-infant pairs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    肠道中的有益细菌影响人体健康,一般认为早期是通过母乳喂养构建了婴儿肠道菌群。目前对不同人群的母婴群体间有益细菌组成差异及是否具有族群特异性证据很少。【目的】探究不同民族母婴群体间乳杆菌的组成及占优势种——副干酪乳酪杆菌(Lacticaseibacillus paracasei)的垂直传递和遗传差异,为开发个性化的益生菌株提供理论基础。【方法】从我国3个不通婚的民族共39对健康母婴对分离乳杆菌,基于基因外重复回文序列PCR分型技术(repetitive extragenic palindromic PCR, rep-PCR)结合功能基因(groEL基因)序列鉴定菌株,对最常见种L. paracasei的83株菌采用多位点序列分型(multilocus sequence typing, MLST)进行种群遗传差异分析。【结果】三个民族母婴对乳杆菌种类组成和数量存在差异,共分离原乳杆菌属的菌株945株,根据最新修订的分类学隶属于4属1种。汉族母婴以黏膜黏液乳杆菌(Lacticaseibacillus rhamnosus, 20.07%)、L. paracasei (16.54%)和奶酪乳酪杆菌(Lacticaseibacillus casei, 11.90%)为优势种,和田维吾尔族母婴以L. casei (13.55%)、L. paracasei (12.69%)和唾液宿主关联乳杆菌(Ligilactobacillus salivarius, 11.47%)为优势种,海南黎族母婴以口腔黏液乳杆菌(Limosilactobacillus oris, 24.55%)、L. paracasei (15.85%)和加氏乳杆菌(Lactobacillus gasseri, 10.87%)为优势种。83株L. paracasei划分为11个rep-PCR群,基于MLST等位基因谱也分为11群、31个序列型(sequence type, STs),不同民族菌株的ST存在特异性,同源重组事件很少;来自同一对母子的L. paracasei分离株有相同的STs,同一种族母婴群体的L. paracasei遗传相似性更高。【结论】不同民族母婴群体乳杆菌菌群组成存在明显差异,来源相同的L. paracasei菌株遗传相似性更高,支持菌株水平上的垂直传递和种族间的特异性。

    Abstract:

    Beneficial bacteria in the gut affect human health, and it is generally believed that the assemblage of healthy gut flora is achieved through vertical transmission of by breastfeeding in early infancy. There is limited evidence for the difference in the composition of beneficial bacteria across different mother-infant cohorts and the presence of population-specific microbial taxa [Objective] To investigate Lactobacillus spp. and the vertical transmission and genetic differences of the dominant species Lacticaseibacillus paracasei among mother-infant cohorts of different ethnic groups, providing a theoretical basis for developing personalized probiotic regimens. [Methods] Lactobacillus strains were isolated from 39 mother-infant pairs of three ethnic groups without mixed marriage in China and identified by repetitive extragenic palindromic PCR (rep-PCR) and groEL sequences. The genetic differences of 83 strains of L. paracasei, a representative species, were analyzed by multilocus sequence typing (MLST). [Results] The species and abundance of Lactobacillus varied among the mother-infant pairs of different ethnic groups. A total of 945 L actobacillus strains were isolated, belonging to 15 species of 4 genera. L. rhamnosus (20.07%), L. paracasei (16.54%), and L. casei (11.90%) were dominant species in the Han ethnic group, while L. casei (13.55%), L. paracasei (12.69%), and Ligilactobacillus salivarius (11.47%) were dominant bacteria in Uighur ethnic group in Hotan. The dominant species in the Li ethnic group in Hainan were Limosilactobacillus oris (24.55%), L. paracasei (15.85%), and Lactobacillus gasseri (10.87%). The 83 strains of L. paracasei were classified into 11 phylogenetic groups by rep-PCR and 31 sequence types (STs) by MLST, demonstrating ethnic specificity. L. paracasei isolates from the same mother-infant pair had the same STs, and isolates from the mother-infant pairs of the same ethnic group had higher genetic similarity. [Conclusion] L actobacil lus species varied in the mother-infant pairs of different ethnic groups, and L. paracase i strains from the same origin displayed higher genetic similarity, which supported vertical transmission at strain level and ethnic specificity.

    参考文献
    [1] AMES SR, LOTODKI LC, AZAD MB. Comparing early life nutritional sources and human milk feeding practices: personalized and dynamic nutrition supports infant gut microbiome development and immune system maturation[J]. Gut Microbes, 2023, 15(1): 2190305.
    [2] ANDRADE MEG de, SIQUEIRA CG de. The gut microbiota, associated diseases and possible treatments: a narrative review[J]. Research Society and Development, 2024, 13(1): e6113141719.
    [3] ASNICAR F, MANARA S, ZOLFO M, TRUONG DT, SCHOLZ M, ARMANINI F, FERRETTI P, GORFER V, PEDROTTI A, TETT A, SEGATA N. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling[J]. mSystems, 2017, 2(1): e00164-16.
    [4] MAKINO H, KUSHIRO A, ISHIKAWA E, MUYLAERT D, KUBOTA H, SAKAI T, OISHI K, MARTIN R, BEN AMOR K, OOZEER R, KNOL J, TANAKA R. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism[J]. Applied and Environmental Microbiology, 2011, 77(19): 6788-6793.
    [5] BOGAERT D, van BEVEREN GJ, de KOFF EM, LUSARRETA PARGA P, BALCAZAR LOPEZ CE, KOPPENSTEINER L, CLERC M, HASRAT R, ARP K, CHU MLJN, de GROOT PCM, SANDERS EAM, van HOUTEN MA, de STEENHUIJSEN PITERS WAA. Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites[J]. Cell Host & Microbe, 2023, 31(3): 447-460.e6.
    [6] AJEEB TT, GONZALEZ E, SOLOMONS NW, VOSSENAAR M, KOSKI KG. Human milk microbiome: associations with maternal diet and infant growth[J]. Frontiers in Nutrition, 2024, 11: 1341777.
    [7] TAFT DH, LEWIS ZT, NGUYEN N, HO S, MASARWEH C, DUNNE-CASTAGNA V, TANCREDI DJ, HUDA MN, STEPHENSEN CB, HINDE K, von MUTIUS E, KIRJAVAINEN PV, DALPHIN JC, LAUENER R, RIEDLER J, SMILOWITZ JT, GERMAN JB, MORROW AL, MILLS DA. Bifidobacterium species colonization in infancy: a global cross-sectional comparison by population history of breastfeeding[J]. Nutrients, 2022, 14(7): 1423.
    [8] DAMACENO QS, SOUZA JP, NICOLI JR, PAULA RL, ASSIS GB, FIGUEIREDO HC, AZEVEDO V, MARTINS FS. Evaluation of potential probiotics isolated from human milk and colostrum[J]. Probiotics and Antimicrobial Proteins, 2017, 9(4): 371-379.
    [9] MANARA S, SELMA-ROYO M, HUANG KD, ASNICAR F, ARMANINI F, BLANCO-MIGUEZ A, CUMBO F, GOLZATO D, MANGHI P, PINTO F, VALLES-COLOMER M, AMOROSO L, CORRIAS M V, PONZONI M, RAFFAETA R, CABRERA-RUBIO R, OLCINA M, PASOLLI E, COLLADO MC, SEGATA N. Maternal and food microbial sources shape the infant microbiome of a rural Ethiopian population[J]. Current Biology, 2023, 33(10): 1939-1950.e4.
    [10] RASPINI B, VACCA M, PORRI D, De GIUSEPPE R, CALABRESE FM, CHIEPPA M, LISO M, CERBO RM, CIVARDI E, GAROFOLI F, De ANGELIS M, CENA H. Early life microbiota colonization at six months of age: a transitional time point[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 590202.
    [11] KUTTY PK. “Mother-microbe-infant-microbe” synchrony-a mini review[J]. Journal of Advances in Medicine and Medical Research, 2020, 32(24): 136-146.
    [12] DURANTI S, LUGLI GA, MANCABELLI L, ARMANINI F, TURRONI F, JAMES K, FERRETTI P, GORFER V, FERRARIO C, MILANI C, MANGIFESTA M, ANZALONE R, ZOLFO M, VIAPPIANI A, PASOLLI E, BARILETTI I, CANTO R, CLEMENTI R, COLOGNA M, CRIFÒ T, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission[J]. Microbiome, 2017, 5(1): 66.
    [13] FERNÁNDEZ L, PANNARAJ PS, RAUTAVA S, RODRÍGUEZ JM. The microbiota of the human mammary ecosystem[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 586667.
    [14] FERRETTI P, PASOLLI E, TETT A, ASNICAR F, GORFER V, FEDI S, ARMANINI F, TRUONG DT, MANARA S, ZOLFO M, BEGHINI F, BERTORELLI R, de SANCTIS V, BARILETTI I, CANTO R, CLEMENTI R, COLOGNA M, CRIFÒ T, CUSUMANO G, GOTTARDI S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome[J]. Cell Host & Microbe, 2018, 24(1): 133-145.e5.
    [15] FREITAS AC, HILL JE. Quantification, isolation and characterization of Bifidobacterium from the vaginal microbiomes of reproductive aged women[J]. Anaerobe, 2017, 47: 145-156.
    [16] DUAR RM, FRESE SA, LIN XB, FERNANDO SC, BURKEY TE, TASSEVA G, PETERSON DA, BLOM J, WENZEL CQ, SZYMANSKI CM, WALTER J. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species[J]. Applied and Environmental Microbiology, 2017, 83(12): e00132.
    [17] WANG KL, XIA XF, SUN LN, WANG H, LI Q, YANG Z, REN J. Microbial diversity and correlation between breast milk and the infant gut[J]. Foods, 2023, 12(9): 1740.
    [18] MARTIN R, HEILIG GHJ, ZOETENDAL EG, SMIDT H, RODRIGUEZ JM. Diversity of the lactobacillus group in breast milk and vagina of healthy women and potential role in the colonization of the infant gut[J]. Journal of Applied Microbiology, 2007, 103(6): 2638-2644.
    [19] HUNG WW, CHEN YH, TSENG SP, JAO YT, TENG LJ, HUNG WC. Using groEL as the target for identification of Enterococcus faecium clades and 7 clinically relevant Enterococcus species[J]. Journal of Microbiology, Immunology and Infection, 2019, 52(2): 255-264.
    [20] YANG B, CHEN YQ, STANTON C, ROSS RP, LEE YK, ZHAO JX, ZHANG H, CHEN W. Bifidobacterium and Lactobacillus composition at species level and gut microbiota diversity in infants before 6 weeks[J]. International Journal of Molecular Sciences, 2019, 20(13): 3306.
    [21] 林杨, 顾美英, 孙建, 唐琦勇, 李雪, 朱静, 古丽尼沙·沙依木, 张志东. 阿克苏地区传统酸乳中乳酸菌筛选及安全性初步评价[J]. 微生物学杂志, 2022, 42(1): 26-33. LIN Y, GU MY, SUN J, TANG QY, LI X, ZHU J, GULINISHA Shayimu, ZHANG ZD. Screening and safety evaluation of lactobacteria from traditional yogurt in Aksu region[J]. Journal of Microbiology, 2022, 42(1): 26-33 (in Chinese).
    [22] YUAN LX, ZHANG XL, LUO BL, LI X, TIAN FW, YAN WL, NI YQ. Ethnic specificity of species and strain composition of Lactobacillus populations from mother-infant pairs, uncovered by multilocus sequence typing[J]. Frontiers in Microbiology, 2022, 13: 814284.
    [23] DUCKCHUL P. Genomic DNA isolation from different biological materials[M]//Protocols for Nucleic Acid Analysis by Nonradioactive Probes. New Jersey: Humana Press, 2007: 3-14.
    [24] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [25] DIANCOURT L, PASSET V, CHERVAUX C, GARAULT P, SMOKVINA T, BRISSE S. Multilocus sequence typing of Lactobacillus casei reveals a clonal population structure with low levels of homologous recombination[J]. Applied and Environmental Microbiology, 2007, 73(20): 6601-6611.
    [26] SHANNON P, MARKIEL A, OZIER O, BALIGA NS, WANG JT, RAMAGE D, AMIN ND, SCHWIKOWSKI B, IDEKER T. Cytoscape: a software environment for integrated models of biomolecular interaction networks[J]. Genome Research, 2003, 13(11): 2498-2504.
    [27] ZHENG JS, WITTOUCK S, SALVETTI E, FRANZ CMAP, HARRIS HMB, MATTARELLI P, O’TOOLE PW, POT B, VANDAMME P, WALTER J, WATANABE K, WUYTS S, FELIS GE, GÄNZLE MG, LEBEER S. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae[J]. International Journal of Systematic and Evolutionary Microbiology, 2020, 70(4): 2782-2858.
    [28] KOHL KD, DEARING MD, BORDENSTEIN SR. Microbial communities exhibit host species distinguishability and phylosymbiosis along the length of the gastrointestinal tract[J]. Molecular Ecology, 2018, 27(8): 1874-1883.
    [29] QUAN C, LI YF, LIU XY, WANG YH, PING J, LU YM, ZHOU GQ. Characterization of structural variation in Tibetans reveals new evidence of high-altitude adaptation and introgression[J]. Genome Biology, 2021, 22(1): 159.
    [30] COUCH CE, STAGAMAN K, SPAAN RS, COMBRINK HJ, SHARPTON TJ, BEECHLER BR, JOLLES AE. Diet and gut microbiome enterotype are associated at the population level in African buffalo[J]. Nature Communications, 2021, 12: 2267.
    [31] SINDI AS, GEDDES DT, WLODEK ME, MUHLHAUSLER BS, PAYNE MS, STINSON LF. Can we modulate the breastfed infant gut microbiota through maternal diet?[J]. FEMS Microbiology Reviews, 2021, 45(5): fuab011.
    [32] MURPHY K, CURLEY D, O’CALLAGHAN TF, O’SHEA CA, DEMPSEY EM, O’TOOLE PW, ROSS RP, RYAN CA, STANTON C. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study[J]. Scientific Reports, 2017, 7: 40597.
    [33] VAUGHAN EE, HEILIG HGHJ, BEN-AMOR K, de VOS WM. Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches[J]. FEMS Microbiology Reviews, 2005, 29(3): 477-490.
    [34] ZHANG XY, MUSHAJIANG S, LUO BL, TIAN FW, NI YQ, YAN WL. The composition and concordance of Lactobacillus populations of infant gut and the corresponding breast-milk and maternal gut[J]. Frontiers in Microbiology, 2020, 11: 597911.
    [35] KIRTZALIDOU E, PRAMATEFTAKI P, KOTSOU M, KYRIACOU A. Screening for lactobacilli with probiotic properties in the infant gut microbiota[J]. Anaerobe, 2011, 17(6): 440-443.
    [36] MEHANNA N, TAWFIK N, SALEM ME. Assessment of potential probiotic bacteria isolated from breast milk[J]. Middle East Journal of Scientific Research, 2013, 14(3): 354-360.
    [37] FRESE SA, BENSON AK, TANNOCK GW, LOACH DM, KIM J, ZHANG M, OH PL, HENG NCK, PATIL PB, JUGE N, MacKENZIE DA, PEARSON BM, LAPIDUS A, DALIN E, TICE H, GOLTSMAN E, LAND M, HAUSER L, IVANOVA N, KYRPIDES NC, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri[J]. PLoS Genetics, 2011, 7(2): e1001314.
    [38] OH PL, BENSON AK, PETERSON DA, PATIL PB, MORIYAMA EN, ROOS S, WALTER J. Diversification of the gut symbiont Lactobacillus reuteri as a result of host-driven evolution[J]. The ISME Journal, 2010, 4(3): 377-387.
    [39] MUEHLBAUER AL, RICHARDS AL, ALAZIZI A, BURNS M, GOMEZ A, CLAYTON JB, PETRZELKOVA K, CASCARDO C, RESZTAK J, WEN XQ, PIQUE-REGI R, LUCA F, BLEKHMAN R. Interspecies variation in hominid gut microbiota controls host gene regulation[J]. SSRN Electronic Journal, 2021, 37(8): 110057
    [40] MATSUMIYA Y, KATO N, WATANABE K, KATO H. Molecular epidemiological study of vertical transmission of vaginal Lactobacillus species from mothers to newborn infants in Japanese, by arbitrarily primed polymerase chain reaction[J]. Journal of Infection and Chemotherapy, 2002, 8(1): 43-49.
    [41] NISHIDA AH, OCHMAN H. A great-ape view of the gut microbiome[J]. Nature Reviews Genetics, 2019, 20: 195-206.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高慧娟,袁丽霞,张雪玲,倪永清. 母婴群体乳杆菌组成及优势种副干酪乳酪杆菌的遗传差异性[J]. 微生物学报, 2024, 64(9): 3295-3313

复制
分享
文章指标
  • 点击次数:175
  • 下载次数: 515
  • HTML阅读次数: 517
  • 引用次数: 0
历史
  • 收稿日期:2024-02-23
  • 最后修改日期:2024-06-03
  • 在线发布日期: 2024-08-30
  • 出版日期: 2024-09-04
文章二维码