基于转录组分析的腾冲嗜热厌氧杆菌thiD的热适应机制研究
作者:
基金项目:

甘肃农业大学科技创新基金(青年导师扶持基金) (GAU-QDFC-2023-04);国家自然科学基金(31500067)


RNA-seq reveals the role of thiD in the thermal adaptation of Thermoanaerobacter tengcongensis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [69]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    ThiD在腾冲嗜热厌氧杆菌中由thiD编码,是硫铵素合成途径的关键酶。thiD的结构和功能已在真菌、酵母菌和植物中得到阐明。然而,thiD在嗜热生物中的功能仍不清楚。【目的】探讨腾冲嗜热厌氧杆菌的嗜热机制并揭示thiD在不同温度下的功能及在热适应调控中的作用。【方法】利用同源重组技术构建腾冲嗜热厌氧杆菌的ΔthiD株,观察并比较野生株和ΔthiD株在50、60、75和80 ℃下的生长趋势。通过转录组测序分析ΔthiD株与野生株在75 ℃的差异表达基因。通过实时荧光定量PCR分析比较野生株和ΔthiD株中13个基因和3个sRNAs在50、60、75、80 ℃下的转录水平。【结果】成功构建了ΔthiD株,生长曲线结果显示其在50 ℃时,ΔthiD株生长速率与野生株无显著差异。然而,在60 ℃和75 ℃时,ΔthiD株生长速度明显慢于野生株。另外,ΔthiD株在80 ℃时几乎不生长。转录组结果显示,与野生株相比,ΔthiD株有503个差异表达基因,其中包括278个上调差异表达基因和213个下调差异表达基因。KEGG分析表明,以下途径与热适应有关,包括硫胺素代谢、嘧啶代谢和嘌呤代谢、肽聚糖生物合成、脂肪酸代谢途径、氨基酸代谢途径、双组分系统、DNA复制、同源重组、错配修复、磷酸转移酶系统。通过实时荧光定量PCR分析发现,在野生株和ΔthiD株中与嗜热机制相关的13个基因和3个sRNAs在特定温度下的转录水平发生了变化。【结论】thiD在腾冲嗜热厌氧杆菌热适应过程中发挥重要作用。本研究为揭示thiD在不同温度下的功能和在热适应过程中的调控机制提供实验数据和理论依据。

    Abstract:

    ThiD encoded by thiD in Thermoanaerobacter tengcongensis is a key enzyme in the biosynthesis of thiamine. The structure and functions of thiD have been elucidated in fungi, yeasts, and plants, while the role of thiD in thermophiles remains unclear. [Objective] This study aims to explore the thermal adaptation mechanism of T. tengcongensis and reveal the role of thiD in the thermal adaptation of T. tengcongensis at different temperatures. [Methods] The thiD-deleted mutant (ΔthiD) of T. tengcongensis was constructed by homologous recombination. The growth trends of the wild type (WT) and ΔthiD at 50 ℃, 60 ℃, 75 ℃, and 80 ℃ were observed and compared. The differentially expressed genes (DEGs) between ΔthiD and WT cultured at 75 ℃ were determined by RNA-seq. The transcript levels of 13 genes and 3 sRNAs in WT and ΔthiD at 50 ℃, 60 ℃, 75 ℃, and 80 ℃ were compared and analyzed by real-time PCR. [Results] ΔthiD was successfully constructed, with the growth rate not significantly different from WT at 50 ℃. However, ΔthiD show cased slower growth than WT at 60 ℃ and 75 ℃ and did not grow at 80 ℃. The transcriptome results revealed 503 DEGs in ΔthiD compared with WT, including 278 DEGs with up regulated expression and 213 DEGs with down regulated expression. The Kyoto encyclopedia of genes and genomes (KEGG) analysis indicated the following pathways associated with thermophilic adaptation, involving thiamine metabolism, pyrimidine metabolism and purine metabolism, peptidoglycan biosynthesis, fatty acid metabolism, amino acid metabolism, two-component system, DNA replication, homologous recombination, mismatch repair, and phosphotransferase system. The transcript levels of 13 genes and 3 sRNAs related to thermal adaptation in WT and ΔthiD changed at specific temperatures. [Conclusion] thiD plays an important role in the thermal adaptation of T. tengcongensis. This study provides experimental data and a theoretical basis for revealing the role of thiD in the thermal adaptation of thermophiles at different temperatures.

    参考文献
    [1] WANG XW, TAN X, DANG CC, LU Y, XIE GJ, LIU BF. Thermophilic microorganisms involved in the nitrogen cycle in thermal environments: advances and prospects[J]. Science of the Total Environment, 2023, 896: 165259.
    [2] LÓPEZ-ORTEGA MA, CHAVARRÍA-HERNÁNDEZ N, LÓPEZ-CUELLAR MDR, RODRÍGUEZ-HERNÁNDEZ AI. A review of extracellular polysaccharides from extreme niches: an emerging natural source for the biotechnology. from the adverse to diverse[J]. International Journal of Biological Macromolecules, 2021, 177: 559-577.
    [3] BAO QY, TIAN YQ, LI W, XU ZY, XUAN ZY, HU SN, DONG W, YANG J, CHEN YJ, XUE YF, XU Y, LAI XQ, HUANG L, DONG XZ, MA YH, LING LJ, TAN HR, CHEN RS, WANG J, YU J, YANG HM. A complete sequence of the T. tengcongensis genome[J]. Genome Research, 2002, 12(5): 689-700.
    [4] TENG WK, LIAO B, CHEN MY, SHU WS. Genomic legacies of ancient adaptation illuminate GC-content evolution in bacteria[J]. Microbiology Spectrum, 2023, 11(1): e0214522.
    [5] HU EZ, LAN XR, LIU ZL, GAO J, NIU DK. A positive correlation between GC content and growth temperature in prokaryotes[J]. BMC Genomics, 2022, 23(1): 110.
    [6] KHACHANE AN, TIMMIS KN, DOS SANTOS VAPM. Uracil content of 16S rRNA of thermophilic and psychrophilic prokaryotes correlates inversely with their optimal growth temperatures[J]. Nucleic Acids Research, 2005, 33(13): 4016-4022.
    [7] JAY ZJ, INSKEEP WP. The distribution, diversity, and importance of 16S rRNA gene introns in the order Thermoproteales[J]. Biology Direct, 2015, 10: 35.
    [8] MIYAZAKI K, TOMARIGUCHI N. Occurrence of randomly recombined functional 16S rRNA genes in Thermus thermophilus suggests genetic interoperability and promiscuity of bacterial 16S rRNAs[J]. Scientific Reports, 2019, 9: 11233.
    [9] LORENZ C, LÜNSE CE, MÖRL M. tRNA modifications: impact on structure and thermal adaptation[J]. Biomolecules, 2017, 7(2): 35.
    [10] OHIRA T, MINOWA K, SUGIYAMA K, YAMASHITA S, SAKAGUCHI Y, MIYAUCHI K, NOGUCHI R, KANEKO A, ORITA I, FUKUI T, TOMITA K, SUZUKI T. Reversible RNA phosphorylation stabilizes tRNA for cellular thermotolerance[J]. Nature, 2022, 605: 372-379.
    [11] HORI H. Regulatory factors for tRNA modifications in extreme- thermophilic bacterium Thermus thermophilus[J]. Frontiers in Genetics, 2019, 10: 204.
    [12] KOGA Y. Thermal adaptation of the archaeal and bacterial lipid membranes[J]. Archaea, 2012, 2012: 789652.
    [13] SLOBODKIN A, SLOBODKINA G, ALLIOUX M, ALAIN K, JEBBAR M, SHADRIN V, KUBLANOV I, TOSHCHAKOV S, BONCH-OSMOLOVSKAYA E. Genomic insights into the carbon and energy metabolism of a thermophilic deep-sea bacterium Deferribacter autotrophicus revealed new metabolic traits in the phylum Deferribacteres[J]. Genes, 2019, 10(11): 849.
    [14] TOMITA T. Structure, function, and regulation of enzymes involved in amino acid metabolism of bacteria and archaea[J]. Bioscience, Biotechnology, and Biochemistry, 2017, 81(11): 2050-2061.
    [15] TIMR S, MADERN D, STERPONE F. Protein thermal stability[J]. Progress in Molecular Biology and Translational Science, 2020, 170: 239-272.
    [16] CHEN Z, WEN B, WANG QH, TONG W, GUO J, BAI X, ZHAO JJ, SUN Y, TANG Q, LIN ZL, LIN L, LIU SQ. Quantitative proteomics reveals the temperature-dependent proteins encoded by a series of cluster genes in Thermoanaerobacter tengcongensis[J]. Molecular & Cellular Proteomics: MCP, 2013, 12(8): 2266-2277.
    [17] WANG ZW, TONG W, WANG QH, BAI X, CHEN Z, ZHAO JJ, XU NZ, LIU SQ. The temperature dependent proteomic analysis of Thermotoga maritima[J]. Public Library of Science ONE, 2012, 7(10): e46463.
    [18] XUE Y, XU Y, LIU Y, MA Y, ZHOU P. Thermoanaerobacter tengcongensis sp. nov., a novel anaerobic, saccharolytic, thermophilic bacterium isolated from a hot spring in Tengcong, China[J]. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(Pt 4): 1335-1341.
    [19] MENG B, QIAN Z, WEI F, WANG WW, ZHOU CQ, WANG ZW, WANG QH, TONG W, WANG Q, MA YH, XU NZ, LIU SQ. Proteomic analysis on the temperature-dependent complexes in Thermoanaerobacter tengcongensis[J]. Proteomics, 2009, 9(11): 3189-3200.
    [20] LIU B, WANG C, YANG HH, TAN HR. Establishment of a genetic transformation system and its application in Thermoanaerobacter tengcongensis[J]. Journal of Genetics and Genomics, 2012, 39(10): 561-570.
    [21] QIAN Z, ZHAO JJ, BAI X, TONG W, CHEN Z, WEI HF, WANG QH, LIU SQ. Thermal stability of glucokinases in Thermoanaerobacter tengcongensis[J]. Biomed Research International, 2013, 2013: 646539.
    [22] SHI Y, ZHENG DY, XIE JY, ZHANG QJ, ZHANG HJ. Thermal stability of Thermoanaerobacter tengcongensis ribosome recycling factor[J]. Protein and Peptide Letters, 2014, 21(3): 285-291.
    [23] LIU B, ZHANG YH, ZHANG W. RNA-seq-based analysis of cold shock response in Thermoanaerobacter tengcongensis, a bacterium harboring a single cold shock protein encoding gene[J]. Public Library of Science ONE, 2014, 9(3): e93289.
    [24] WANG C, JIN CL, ZHANG JH, BAO QY, LIU B, TAN HR. Transcriptomic analysis of Thermoanaerobacter tengcongensis grown at different temperatures by RNA sequencing[J]. Journal of Genetics and Genomics, 2015, 42(6): 335-338.
    [25] WANG JQ, ZHAO CF, MENG B, XIE JH, ZHOU CQ, CHEN XS, ZHAO K, SHAO JM, XUE YF, XU NZ, MA YH, LIU SQ. The proteomic alterations of Thermoanaerobacter tengcongensis cultured at different temperatures[J]. Proteomics, 2007, 7(9): 1409-1419.
    [26] NAVDAEVA V, ZURBRIGGEN A, WALTERSPERGER S, SCHNEIDER P, OBERHOLZER AE, BÄHLER P, BÄCHLER C, GRIEDER A, BAUMANN U, ERNI B. Phosphoenolpyruvate: sugar phosphotransferase system from the hyperthermophilic Thermoanaerobacter tengcongensis[J]. Biochemistry, 2011, 50(7): 1184-1193.
    [27] MIZOTE T, TSUDA M, SMITH DDS, NAKAYAMA H, NAKAZAWA T. Cloning and characterization of the thiD/J gene of Escherichia coli encoding a thiamin- synthesizing bifunctional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase[J]. Microbiology, 1999, 145(Pt2): 495-501.
    [28] JURGENSON CT, BEGLEY TP, EALICK SE. The structural and biochemical foundations of thiamin biosynthesis[J]. Annual Review of Biochemistry, 2009, 78: 569-603.
    [29] NODWELL MB, MENZ H, KIRSCH SF, SIEBER SA. Rugulactone and its analogues exert antibacterial effects through multiple mechanisms including inhibition of thiamine biosynthesis[J]. Chembiochem: a European Journal of Chemical Biology, 2012, 13(10): 1439-1446.
    [30] HAAS AL, LAUN NP, BEGLEY TP. Thi20, a remarkable enzyme from Saccharomyces cerevisiae with dual thiamin biosynthetic and degradation activities[J]. Bioorganic Chemistry, 2005, 33(4): 338-344.
    [31] FRENCH JB, BEGLEY TP, EALICK SE. Structure of trifunctional THI20 from yeast[J]. Acta Crystallographica Section D, Biological Crystallography, 2011, 67(Pt 9): 784-791.
    [32] KARUNAKARAN R, EBERT K, HARVEY S, LEONARD ME, RAMACHANDRAN V, POOLE PS. Thiamine is synthesized by a salvage pathway in Rhizobium leguminosarum bv. viciae strain 3841[J]. Journal of Bacteriology, 2006, 188(18): 6661-6668.
    [33] WANG YG, SUN SC, YU LM, HU S, FAN WG, LENG FF, MA JZ. Optimization and mechanism exploration for Escherichia coli transformed with plasmid pUC19 by the combination with ultrasound treatment and chemical method[J]. Ultrasonics Sonochemistry, 2021, 74: 105552.
    [34] STEEMERS FJ, GUNDERSON KL. Illumina, Inc.[J]. Pharmacogenomics, 2005, 6(7): 777-782.
    [35] LANGMEAD B, TRAPNELL C, POP M, SALZBERG SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biology, 2009, 10(3): R25.
    [36] PUTRI GH, ANDERS S, PYL PT, PIMANDA JE, ZANINI F. Analysing high-throughput sequencing data in Python with HTSeq 2.0[J]. Bioinformatics, 2022, 38(10): 2943-2945.
    [37] ZHAO YD, LI MC, KONATÉ MM, CHEN L, DAS B, KARLOVICH C, WILLIAMS PM, EVRARD YA, DOROSHOW JH, McSHANE LM. TPM, FPKM, or normalized counts? A comparative study of quantification measures for the analysis of RNA-seq data from the NCI patient-derived models repository[J]. Journal of Translational Medicine, 2021, 19(1): 269.
    [38] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
    [39] GHOSH D. Wavelet-based Benjamini-Hochberg procedures for multiple testing under dependence[J]. Mathematical Biosciences and Engineering: MBE, 2019, 17(1): 56-72.
    [40] ANDERS S, HUBER W. Differential expression analysis for sequence count data[J]. Nature Precedings, 2010.
    [41] TARAZONA S, GARCÍA-ALCALDE F, DOPAZO J, FERRER A, CONESA A. Differential expression in RNA-seq: a matter of depth[J]. Genome Research, 2011, 21(12): 2213-2223.
    [42] KANEHISA M, GOTO S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 28(1): 27-30.
    [43] BUCHFINK B, XIE C, HUSON DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12: 59-60.
    [44] JIAO YM, WIDSCHWENDTER M, TESCHENDORFF AE. A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control[J]. Bioinformatics, 2014, 30(16): 2360-2366.
    [45] DEMBSKA A, ŚWITALSKA A, FEDORUK- WYSZOMIRSKA A, JUSKOWIAK B. Development of fluorescence oligonucleotide probes based on cytosine- and guanine-rich sequences[J]. Scientific Reports, 2020, 10: 11006.
    [46] DUTTA A, CHAUDHURI K. Analysis of tRNA composition and folding in psychrophilic, mesophilic and thermophilic genomes: indications for thermal adaptation[J]. FEMS Microbiology Letters, 2010, 305(2): 100-108.
    [47] BASAK S, MUKHOPADHYAY P, GUPTA SK, GHOSH TC. Genomic adaptation of prokaryotic organisms at high temperature[J]. Bioinformation, 2010, 4(8): 352-356.
    [48] MALLIK S, KUNDU S. A comparison of structural and evolutionary attributes of Escherichia coli and Thermus thermophilus small ribosomal subunits: signatures of thermal adaptation[J]. Public Library of Science ONE, 2013, 8(8): e69898.
    [49] LOVERING AL, SAFADI SS, STRYNADKA NCJ. Structural perspective of peptidoglycan biosynthesis and assembly[J]. Annual Review of Biochemistry, 2012, 81: 451-478.
    [50] VOLLMER W, BLANOT D, DE PEDRO MA. Peptidoglycan structure and architecture[J]. FEMS Microbiology Reviews, 2008, 32(2): 149-167.
    [51] HANSEN T, OEHLMANN M, SCHÖNHEIT P. Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus[J]. Journal of Bacteriology, 2001, 183(11): 3428-3435.
    [52] WYLLIE JA, MCKAY MV, BARROW AS, SOARES DA COSTA TP. Biosynthesis of uridine diphosphate N-acetylglucosamine: an underexploited pathway in the search for novel antibiotics?[J]. IUBMB Life, 2022, 74(12): 1232-1252.
    [53] NESTEROV SV, YAGUZHINSKY LS, PODOPRIGORA GI, NARTSISSOV YR. Amino acids as regulators of cell metabolism[J]. Biochemistry, 2020, 85(4): 393-408.
    [54] REED CJ, LEWIS H, TREJO E, WINSTON V, EVILIA C. Protein adaptations in archaeal extremophiles[J]. Archaea, 2013, 2013: 373275.
    [55] SHIVAJI S, PRAKASH JSS. How do bacteria sense and respond to low temperature?[J]. Archives of Microbiology, 2010, 192(2): 85-95.
    [56] FASSLER JS, WEST AH. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways[J]. Eukaryotic Cell, 2013, 12(8): 1052-1060.
    [57] RAJPUT A, SEIF Y, CHOUDHARY KS, DALLDORF C, POUDEL S, MONK JM, PALSSON BO. Pangenome analytics reveal two-component systems as conserved targets in ESKAPEE pathogens[J]. mSystems, 2021, 6(1): e00981-20.
    [58] BUSCHIAZZO A, TRAJTENBERG F. Two-component sensing and regulation: how do histidine kinases talk with response regulators at the molecular level?[J]. Annual Review of Microbiology, 2019, 73: 507-528.
    [59] HOREMANS S, PITOULIAS M, HOLLAND A, PATEAU E, LECHAPLAIS C, EKATERINA D, PERRET A, SOULTANAS P, JANNIERE L. Pyruvate kinase, a metabolic sensor powering glycolysis, drives the metabolic control of DNA replication[J]. BMC Biology, 2022, 20(1): 87.
    [60] TANG Q, LIU YP, SHAN HH, TIAN LF, ZHANG JZ, YAN XX. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair[J]. Scientific Reports, 2018, 8: 2127.
    [61] MALLIK S, POPODI EM, HANSON AJ, FOSTER PL. Interactions and localization of Escherichia coli error-prone DNA polymerase IV after DNA damage[J]. Journal of Bacteriology, 2015, 197(17): 2792-2809.
    [62] ZHANG SL, LIU B, YANG HH, TIAN YQ, LIU G, LI L, TAN HR. Characterization of EndoTT, a novel single-stranded DNA-specific endonuclease from Thermoanaerobacter tengcongensis[J]. Nucleic Acids Research, 2010, 38(11): 3709-3720.
    [63] WANI AK, AKHTAR N, SHER F, NAVARRETE AA, AMÉRICO-PINHEIRO JHP. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems[J]. Archives of Microbiology, 2022, 204(2): 144.
    [64] KOLIBACHUK D, ROUHBAKHSH D, BAUMANN P. Aromatic amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids): cloning and sequencing of a DNA fragment containing aroH-thrS-infC-rpmI-rplT[J]. Current Microbiology, 1995, 30(5): 313-316.
    [65] ZHAO MN, ZHANG MN, REN ZH, WANG YY, GUAN ZH. Base-mediated formal[3+2]cycloaddition of β, γ-alkenyl esters and p-TsN3 for the synthesis of pyrazoles[J]. Science Bulletin, 2017, 62(7): 493-496.
    [66] ESTEVES AM, GRAÇA G, PEYRIGA L, TORCATO IM, BORGES N, PORTAIS JC, SANTOS H. Combined transcriptomics–metabolomics profiling of the heat shock response in the hyperthermophilic archaeon Pyrococcus furiosus[J]. Extremophiles, 2019, 23(1): 101-118.
    [67] KOUZMINOVA EA, KADYROV FF, KUZMINOV A. RNase HII saves rnhA mutant Escherichia coli from R-loop-associated chromosomal fragmentation[J]. Journal of Molecular Biology, 2017, 429(19): 2873-2894.
    [68] LI J, ZHENG W, GU M, HAN L, LUO YM, YU KK, SUN MX, ZONG YL, MA XX, LIU B, LOWDER EP, MENDEZ DL, KRANZ RG, ZHANG K, ZHU JP. Structures of the CcmABCD heme release complex at multiple states[J]. Nature Communications, 2022, 13: 6422.
    [69] GONG Z, YANG S, DONG X, YANG QF, ZHU YL, XIAO Y, TANG C. Hierarchical conformational dynamics confers thermal adaptability to preQ1 RNA riboswitches[J]. Journal of Molecular Biology, 2020, 432(16): 4523-4543.
    相似文献
    引证文献
引用本文

刘亚娟,郑航辉,刘原子,陈宜军,万学瑞,赵春林,王川,杨宇泽. 基于转录组分析的腾冲嗜热厌氧杆菌thiD的热适应机制研究[J]. 微生物学报, 2024, 64(9): 3453-3473

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 495
  • HTML阅读次数: 461
  • 引用次数: 0
历史
  • 收稿日期:2024-03-10
  • 最后修改日期:2024-05-28
  • 在线发布日期: 2024-08-30
  • 出版日期: 2024-09-04
文章二维码