基于原位延时成像算法的快速抗菌药物敏感性测试方法
作者:
基金项目:

国家重点研发计划(2022YFC2403300);国家自然科学基金(32170173)


Rapid antimicrobial susceptibility test based on in-situ time-lapsed imaging of microcolonies
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [3]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】每年有700多万人因抗生素使用不当或不及时而死于细菌感染。抗菌药物敏感性测试(antimicrobial susceptibility test, AST)在临床上被用于指导抗生素治疗,传统的临床检测方法至少需要16−20 h才能获得检测结果,存在局限性。开发基于细菌形态分析的新型快速AST方法,有助于提高诊断效率,为危急重症的细菌感染患者提供及时的治疗。【方法】开发一种原位微菌落延时成像技术,将细菌孵育、抗生素给药、显微成像和图像处理算法相结合。通过成像设备和算法两个维度对齐图像,原位追踪不同浓度抗生素作用下菌落的形态变化,从而判断药敏结果。【结果】经过实验验证,该技术对革兰氏阳性菌和革兰氏阴性菌均有效,可在2 h内测定最低抑菌浓度(minimal inhibitory concentration, MIC),与临床金标准方法结果一致。【结论】本研究的快速AST方法显著缩短了获得AST报告的时间,并且有望用于更广泛的菌株和抗生素组合。

    Abstract:

    [Objective] Over 7 million people die from bacterial infections every year due to the inappropriate or untimely use of antibiotics. Antimicrobial susceptibility test (AST) is a routine method guiding antibiotic therapy in clinical practice, while the existing methods have limitations as they require at least 16–20 h to get the results. We aimed to develop a novel rapid AST method based on bacterial morphology analysis, which can improve the diagnosis efficiency and provide timely treatment for the patients with bacterial infections, especially for urgent cases. [Methods] We developed an in-situ time-lapsed imaging (ISM-TLI) technique for microcolonies by combining bacterial incubation, in vitro antibiotic treatment, microscopic imaging, and image processing algorithm. The combination of the imaging device with the algorithm enabled the tracing of the morphological changes of colonies treated with different concentrations of antibiotics in-situ and the rapid obtainment of AST results. [Results] This technique worked effectively for both Gram-positive and Gram-negative bacteria and could determine the minimum inhibitory concentration (MIC) within 2 h, with the results in agreement with those obtained with the clinical gold standard method. [Conclusion] Our rapid AST technique significantly reduced the turn-around-time for obtaining the AST profile and had great potential for AST of a wide range of other strains.

    参考文献
    [1] ROTELLO VM. Nanomaterials for fighting multidrug-resistant biofilm infections[J]. BME Frontiers, 2023, 4: 0017.
    [2] GAJDÁCS M. The continuing threat of methicillin-resistant Staphylococcus aureus[J]. Antibiotics, 2019, 8(2): 52.
    [3] AHMED MO, BAPTISTE KE. Vancomycin-resistant enterococci: a review of antimicrobial resistance mechanisms and perspectives of human and animal health[J]. Microbial Drug Resistance, 2018, 24(5): 590-606.
    [4] AMSTERDAM D. Perspective: limiting antimicrobial resistance with artificial intelligence/machine learning[J]. BME Frontiers, 2023, 4: 0033.
    [5] PATERSON DL, BONOMO RA. Extended-spectrum beta-lactamases: a clinical update[J]. Clinical Microbiology Reviews, 2005, 18(4): 657-686.
    [6] JEAN SS, LEE NY, TANG HJ, LU MC, KO WC, HSUEH PR. Carbapenem-resistant Enterobacteriaceae infections: Taiwan aspects[J]. Frontiers in Microbiology, 2018, 9: 2888.
    [7] GAJDÁCS M. The concept of an ideal antibiotic: implications for drug design[J]. Molecules, 2019, 24(5): 892.
    [8] GWYNN MN, PORTNOY A, RITTENHOUSE SF, PAYNE DJ. Challenges of antibacterial discovery revisited[J]. Annals of the New York Academy of Sciences, 2010, 1213(1): 5-19.
    [9] LEE WB, FU CY, CHANG WH, YOU HL, WANG CH, LEE MS, LEE GB. A microfluidic device for antimicrobial susceptibility testing based on a broth dilution method[J]. Biosensors & Bioelectronics, 2017, 87: 669-678.
    [10] RELLER LB, WEINSTEIN M, JORGENSEN JH, FERRARO MJ. Antimicrobial susceptibility testing: a review of general principles and contemporary practices[J]. Clinical Infectious Diseases, 2009, 49(11): 1749-1755.
    [11] DALGAARD P, ROSS T, KAMPERMAN L, NEUMEYER K, McMEEKIN TA. Estimation of bacterial growth rates from turbidimetric and viable count data[J]. International Journal of Food Microbiology, 1994, 23(3/4): 391-404.
    [12] WIEGAND I, HILPERT K, HANCOCK REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances[J]. Nature Protocols, 2008, 3: 163-175.
    [13] SU M, SATOLA SW, READ TD. Genome-based prediction of bacterial antibiotic resistance[J]. Journal of clinical microbiology, 2019, 57(3). DOI: 10.1128/jcm. 01405-18.
    [14] STROMMENGER B, KETTLITZ C, WERNER G, WITTE W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus[J]. Journal of Clinical Microbiology, 2003, 41(9): 4089-4094.
    [15] 孙志刚, 刘静, 王奕凯, 任晓敏, 司晓慧, 吕若一, 张倩, 董虹, 孙英健, 刘晓晔. 微生物检测技术在动物细菌性疫病诊断中的研究进展[J/OL]. 微生物学杂志, 2023-11-22. https://kns.cnki.net/kcms/detail/ 21.1186.Q.20231121.1123.002.html. SUN ZG, LIU J, WANG YK, REN XM, SI XH, LYU RY, ZHANG Q, DONG H, SUN YJ, LIU XY. Advances in microbial detection techniques in animal bacterial disease diagnosis[J/OL]. Journal of Microbiology, 2023-11-22. https://kns.cnki.net/kcms/detail/21.1186.Q. 20231121.1123.002.html (in Chinese).
    [16] ELOWITZ MB, LEVINE AJ, SIGGIA ED, SWAIN PS. Stochastic gene expression in a single cell[J]. Science, 2002, 297(5584): 1183-1186.
    [17] HUMPHRIES R, BOBENCHIK AM, HINDLER JA, SCHUETZ AN. Overview of changes to the clinical and laboratory standards institute Performance standards for antimicrobial susceptibility testing, M100, 31st edition[J]. Journal of Clinical Microbiology, 2021, 59(12): e0021321.
    [18] 程禹, 罗敏玉, 陈代杰. 耐甲氧西林金葡菌到万古霉素高度耐药金葡菌的发展及其感染的药物治疗[J]. 世界临床药物, 2011, 32(8): 482-487. CHENG Y, LUO MY, CHEN DJ. Development and pharmacotherapy of methicillin resistant Staphylococcus aureus and vancomycin resistant Staphylococcus aureus[J]. World Clinical Drugs, 2011, 32(8): 482-487 (in Chinese).
    [19] JIA CY, WU FG. Antibacterial chemodynamic therapy: materials and strategies[J]. BME Frontiers, 2023, 4: 0021.
    [20] TONG SYC, DAVIS JS, EICHENBERGER E, HOLLAND TL, JR FOWLER VG. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management[J]. Clinical Microbiology Reviews, 2015, 28(3): 603-661.
    [21] LI B, MA CL, YU X, SUN Y, LI MM, YE JZ, ZHANG YP, WU Q, ZHOU TL. Investigation of mechanisms and molecular epidemiology of linezolid nonsusceptible Enterococcus faecalis isolated from a teaching hospital in China[J]. Journal of Microbiology, Immunology and Infection, 2016, 49(4): 595-599.
    [22] 李佳珣, 叶雨寒, 胡心怡, 张秋香, 赵建新. 抑制铜绿假单胞菌和金黄色葡萄球菌生物膜形成的乳杆菌筛选及机制初探[J]. 微生物学杂志, 2023, 43(6): 89-96. LI JX, YE YH, HU XY, ZHANG QX, ZHAO JX. Screening of biofilm forming Lactobacillus inhibiting Pseudomonas aeruginosa and Staphylococcus aureus and initial probe of its mechanism[J]. Journal of Microbiology, 2023, 43(6): 89-96 (in Chinese).
    [23] BUSH K. Beta-lactam antibiotics: penicillins[J]. Antibiotic and chemotherapy, 2010: 200-225.
    [24] CALVORI C, FRONTALI L, LEONI L, TECCE G. Effect of rifamycin on protein synthesis[J]. Nature, 1965, 207: 417-418.
    [25] DRLICA K, ZHAO X. DNA gyrase, topoisomerase IV, and the 4-quinolones[J]. Microbiology and Molecular Biology Reviews, 1997, 61(3): 377-392.
    [26] SRIVASTAVA S, van RIJN SP, WESSELS AM, ALFFENAAR JW C, GUMBO T. Susceptibility testing of antibiotics that degrade faster than the doubling time of slow-growing mycobacteria: ertapenem sterilizing effect versus Mycobacterium tuberculosis[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(5): 3193-3195.
    [27] EDMONDSON DG, DeLAY BD, KOWIS LE, NORRIS SJ. Parameters affecting continuous in vitro culture of Treponema pallidum strains[J]. mBio, 2021, 12(1): e03536-20.
    引证文献
引用本文

高千惠,徐亦雯,陈弘毅,胡慧杰,蒙思宇,张长松,王婷,张志强,宋一之. 基于原位延时成像算法的快速抗菌药物敏感性测试方法[J]. 微生物学报, 2024, 64(9): 3533-3546

复制
相关视频

分享
文章指标
  • 点击次数:326
  • 下载次数: 600
  • HTML阅读次数: 549
  • 引用次数: 0
历史
  • 收稿日期:2024-02-23
  • 最后修改日期:2024-05-13
  • 在线发布日期: 2024-08-30
  • 出版日期: 2024-09-04
文章二维码