基于转录组学分析刺糖多孢菌多杀菌素合成代谢途径关键酶基因挖掘
作者:
基金项目:

国家重点研发计划(2023YFC3402301);海河实验室项目(22HHSWSS00024);天津市合成生物技术创新能力提升行动项目(TSBICIP-CXRC-025)


Mining of crucial enzyme genes in the synthesis of spinosad in Saccharopolyspora spinosabased on transcriptomics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • | | | |
  • 文章评论
    摘要:

    【目的】通过对不同时期的刺糖多孢菌进行转录组分析,探究多杀菌素生物合成的相关代谢通路,挖掘代谢途径关键酶基因,探究多杀菌素竞争基因簇,为高产工程菌的构建奠定基础。【方法】选取刺糖多孢菌株对数生长期(T2-48 h)和稳定期(T6-144 h)进行比较转录组分析,并通过实时荧光定量PCR (real-time fluorescence quantitative PCR,qRT-PCR)与转录组测序进行相互验证。采用基因本体论(gene ontology,GO)和京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)对差异表达基因进行功能和代谢通路注释并进行中心碳代谢分析。【结果】刺糖多孢菌通过转录组测序发现有2 542个差异表达基因,其中具有显著上调基因1 188个,显著下调基因1 354个。GO注释表明,差异表达基因主要参与羧酸代谢过程、含氧酸代谢过程、有机酸代谢过程和氨基酸代谢过程。KEGG富集结果表明,差异表达基因主要参与甘氨酸、丝氨酸和苏氨酸代谢,以及氧化磷酸化和精氨酸生物合成等通路。进一步分析得到7个与多杀菌素生物合成相关的基因,其中accBPfkG6PDdsdA表达量显著上调,而涉及多杀菌素前体消耗的GAPDHaceEDLAT以及TCA循环和精氨酸生物合成途径中的基因表达量都呈现显著性下调趋势。qRT-PCR与转录组测序结果发现双方同时上调的基因有12个,分别为BGC2(43 846 bp)、BGC4(18 330 bp)、BGC9(20 501 bp)、BGC18(62 621 bp)、BGC22(19 626 bp)、BGC25(42 896 bp)、BGC26(40 086 bp)、BGC28(39 392 bp)、BGC30(20 282 bp)、BGC31(53 657 bp)、BGC34(20 787 bp)和BGC35(40 232 bp)。【结论】本研究通过转录组学分析获得了不同时期刺糖多孢菌的差异基因以及多杀菌素生物合成通路,并分析了刺糖多孢菌中多杀菌素的竞争基因簇,为后期开展多杀菌素生物合成途径的优化和对刺糖多孢菌进行遗传改造从而达到提高多杀菌素产量的目的奠定了基础。

    Abstract:

    [Objective] To mine the key enzyme genes associated with spinosad synthesis and the biosynthetic gene clusters (BGCs) in Saccharopolyspora spinosa at different developmental stages by transcriptomics,thus laying the groundwork for the construction of high-yield strains.[Methods]The transcriptomes of S.spinosa during the logarithmic phase (T2-48 h) and the stationary phase (T6-144 h) were compared.The results from qRT-PCR and transcriptome sequencing were mutually validated.Gene ontology (GO) annotation and Kyoto encyclopedia of genes and genomes (KEGG) enrichment were performed for the differentially expressed genes (DEGs).Central carbon metabolism analysis was performed.[Results] The transcriptome sequencing of S.spinosa revealed 2 542 DEGs,including 1 188 genes with significantly up-regulated expression and 1 354 genes with significantly down-regulated expression.GO annotation indicated that the DEGs were primarily involved in carboxylic acid metabolic process,oxoacid metabolic process,organic acid metabolic process,and amino acid metabolic process.KEGG enrichment analysis demonstrated DEGs were mainly involved in pathways such as glycine,serine,and threonine metabolism,oxidative phosphorylation,and arginine biosynthesis.Further analysis identified seven genes related to spinosad biosynthesis.Among them,accB,Pfk,G6PD,and dsdA showed significantly up-regulated expression,while GAPDH,aceE,DLAT involved in the consumption of spinosad precursors,as well as genes in the TCA cycle and arginine biosynthesis,exhibited significantly down-regulated expression.The results of qRT-PCR were consistent with the trends observed in transcriptome sequencing,which revealed 12 upregulated BGCs:BGC2(43 846 bp),BGC4(18 330 bp),BGC9(20 501 bp),BGC18(62 621 bp),BGC22(19 626 bp),BGC25(42 896 bp),BGC26(40 086 bp),BGC28(39 392 bp),BGC30(20 282 bp),BGC31(53 657 bp),BGC34(20 787 bp),and BGC35(40 232 bp).[Conclusion]This study elucidated DEGs in S.spinosa at different developmental stages through transcriptome analysis,and analyzed the biosynthetic pathways and BGCs of spinosad.These findings pave the way for optimizing the spinosad biosynthetic pathways and genetically modifying S.spinosa to enhance the spinosad production in subsequent studies.

    参考文献
    [1] DEUTSCH CA, TEWKSBURY JJ, TIGCHELAAR M, BATTISTI DS, MERRILL SC, HUEY RB, NAYLOR RL. Increase in crop losses to insect pests in a warming climate[J]. Science, 2018, 361(6405): 916-919.
    [2] ZAFEIRIADIS S, SAKKA MK, ATHANASSIOU CG. Efficacy of contact insecticides for the control of the lesser mealworm, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae)[J]. Journal of Stored Products Research, 2021, 92: 101817.
    [3] Gervais P. Chemical hazard due to insecticides-determinations of cholinesterases and hygiene of use of organophosphorus compounds[J]. Archives Des Maladies Professionnelles De Medecine Du Travail Et De Securite Sociale, 1976, 37(3): 320-324.
    [4] 黄振. 一种防治水稻害虫的微生物复配杀虫剂及其应用: CN201711431517.6[P]. 2018-04-13. Huang Z. Microbial complex insecticide used for controlling insects on rice, comprises Isaria and pymetrozine: CN201711431517.6[P]. 2018-04-13.
    [5] HUANG KX, XIA LQ, ZHANG YM, DING XZ, ZAHN JA. Recent advances in the biochemistry of spinosyns[J]. Applied Microbiology and Biotechnology, 2009, 82(1): 13-23.
    [6] WATSON GB. Actions of insecticidal spinosyns on γ-aminobutyric acid responses from small-diameter cockroach neurons[J]. Pesticide Biochemistry and Physiology, 2001, 71(1): 20-28.
    [7] THOMPSON DG, HARRIS BJ, LANTEIGNE LJ, BUSCARINI TM, CHARTRAND DT. Fate of spinosad in litter and soils of a mixed conifer stand in the Acadian forest region of New Brunswick[J]. Journal of Agricultural and Food Chemistry, 2002, 50(4): 790-795.
    [8] PAN HX, LI J, HE NJ, CHEN JY, ZHOU YM, SHAO L, CHEN DJ. Improvement of spinosad production by overexpression of gtt and gdh controlled by promoter PermE* in Saccharopolyspora spinosa SIPI-A2090[J]. Biotechnology Letters, 2011, 33(4): 733-739.
    [9] ZHAO FL, XUE CY, WANG ML, WANG XY, LU WY. A comparative metabolomics analysis of Saccharopolyspora spinosa WT, WH124, and LU104 revealed metabolic mechanisms correlated with increases in spinosad yield[J]. Bioscience, Biotechnology, and Biochemistry, 2013, 77(8): 1661-1668.
    [10] MADDURI K, WALDRON C, MATSUSHIMA P, BROUGHTON MC, CRAWFORD K, MERLO DJ, BALTZ RH. Genes for the biosynthesis of spinosyns: applications for yield improvement in Saccharopolyspora spinosa[J]. Journal of Industrial Microbiology and Biotechnology, 2001, 27(6): 399-402.
    [11] WALDRON C, MADDURI K, CRAWFORD K, MERLO DJ, TREADWAY P, BROUGHTON MC, BALTZ RH. A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa[J]. Antonie Van Leeuwenhoek, 2000, 78(3): 385-390.
    [12] YOU D, WANG MM, YE BC. Acetyl-CoA synthetases of Saccharopolyspora erythrae a are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels[J]. Molecular Microbiology, 2017, 103(5): 845-859.
    [13] STAUNTON J, WEISSMAN KJ. Polyketide biosynthesis: a millennium review[J]. Natural Product Reports, 2001, 18(4): 380-416.
    [14] LIU ZD, ZHU ZR, TANG JL, HE HC, WAN QQ, LUO YW, HUANG WT, YU ZQ, HU YB, DING XZ, XIA LQ. RNA-seq-based transcriptomic analysis of Saccharopolyspora spinosa revealed the critical function of PEP phosphonomutase in the replenishment pathway[J]. Journal of Agricultural and Food Chemistry, 2020, 68(49): 14660-14669.
    [15] 冯晓洲, 王为善, 任晓慧, 刘新利, 毛相朝, 杨克迁. 多杀菌素生物合成基因簇启动子探测和转录时序[J]. 生物工程学报, 2013, 29(7): 914-926. FENG XZ, WANG WS, REN XH, LIU XL, MAO N, YANG KQ. Promoter detection and transcriptional analysis of the spinosad biosynthetic gene cluster[J]. Chinese Journal of Biotechnology, 2013, 29(7): 914-926(in Chinese)
    [16] Simon A. FastQC: a quality control tool for high throughput sequence data[EB/OL]. [2023-08-22]. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
    [17] CHEN SF, ZHOU YQ, CHEN YR, GU J. Fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890.
    [18] DOBIN A, GINGERAS TR. Mapping RNA-seq reads with STAR[J]. Current Protocols in Bioinformatics, 2015, 51: 11.14.1-11.1411.14.19.
    [19] LIAO Y, SMYTH GK, SHI W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features[J]. Bioinformatics, 2014, 30(7): 923-930.
    [20] LOVE MI, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.
    [21] PERTEA M, KIM D, PERTEA GM, LEEK JT, SALZBERG SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11: 1650-1667.
    [22] Raivo K. pheatmap[EB/OL]. [2023-08-22]. https://github.com/raivokolde/pheatmap.
    [23] Winston C. ggplot2[EB/OL]. [2023-08-22]. https://ggplot2.tidyverse.org/.
    [24] CANTALAPIEDRA CP, HERNÁNDEZ-PLAZA A, LETUNIC I, BORK P, HUERTA-CEPAS J. eggNOG-mapper v2: functional annotation, orthology assignments, and domain prediction at the metagenomic scale[J]. Molecular Biology and Evolution, 2021, 38(12): 5825-5829.
    [25] HUERTA-CEPAS J, SZKLARCZYK D, HELLER D, HERNÁNDEZ-PLAZA A, FORSLUND SK, COOK H, MENDE DR, LETUNIC I, RATTEI T, JENSEN LJ, von MERING C, BORK P. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): D309-D314.
    [26] Vince C. AnnotationHub[EB/OL]. [2023-08-22]. https://bioconductor.org/packages/release/bioc/html/AnnotationHub.html.
    [27] ASHBURNER M, BALL CA, BLAKE JA, BOTSTEIN D, BUTLER H, CHERRY JM, DAVIS AP, DOLINSKI K, DWIGHT SS, EPPIG JT, HARRIS MA, HILL DP, ISSEL-TARVER L, KASARSKIS A, LEWIS S, MATESE JC, RICHARDSON JE, RINGWALD M, RUBIN GM, SHERLOCK G. Gene ontology: tool for the unification of biology[J]. Nature Genetics, 2000, 25(1): 25-29.
    [28] AOKI-KINOSHITA KF, KANEHISA M. Gene annotation and pathway mapping in KEGG[J]. Methods in Molecular Biology, 2007, 396: 71-91.
    [29] WU TZ, HU EQ, XU SB, CHEN MJ, GUO PF, DAI ZH, FENG TZ, ZHOU L, TANG WL, ZHAN L, FU XC, LIU SS, BO XC, YU GC. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation (Cambridge (Mass)), 2021, 2(3): 100141.
    [30] BLIN K, SHAW S, KLOOSTERMAN AM, CHARLOP-POWERS Z, van WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 6.0: improving cluster detection and comparison capabilities[J]. Nucleic Acids Research, 2021, 49(W1): W29-W35.
    [31] 刘朱东. 刺糖多孢菌转录组学研究以及影响多杀菌素合成关键基因的挖掘[D]. 长沙: 湖南师范大学博士学位论文, 2021. LIU ZD. The transcriptomics analysis and mining of key genes affecting spinosad biosynthesis in Saccharopolyspora spinosa[D]. Changsha: Doctoral Dissertation of Hunan Normal University, 2021(in Chinese)
    [32] WALDRON C, MATSUSHIMA P, ROSTECK PR Jr, BROUGHTON MC, TURNER J, MADDURI K, CRAWFORD KP, MERLO DJ, BALTZ RH. Cloning and analysis of the spinosad biosynthetic gene cluster of Saccharopolyspora spinosa[J]. Chemistry & Biology, 2001, 8(5): 487-499.
    [33] WAKIL SJ. A malonic acid derivative as an intermediate in fatty acid synthesis[J]. Journal of the American Chemical Society, 1958, 80(23): 6465.
    [34] ZHANG XM, XUE CY, ZHAO FL, LI DS, YIN J, ZHANG CB, CAIYIN Q, LU WY. Suitable extracellular oxidoreduction potential inhibit rex regulation and effect central carbon and energy metabolism in Saccharopolyspora spinosa[J]. Microbial Cell Factories, 2014, 13: 98.
    [35] 孙明明, 乔亚亚, 李垒垒, 山长亮, 张帅. 二氢硫辛酰转乙酰基酶通过乙酰化磷酸葡糖酸脱氢酶促进核酸合成[J]. 中国生物化学与分子生物学报, 2021, 37(3): 339-346. SUN MM, QIAO YY, LI LL, SHAN CL, ZHANG S. Dihydrolipoamide acetyltransferase promotes nucleic acid synthesis by controlling phosphogluconate dehydrogenase acetylation[J]. Chinese Journal of Biochemistry and Molecular Biology, 2021, 37(3): 339-346(in Chinese)
    [36] 宋灿辉, 张伟国. 敲除aceE基因对大肠杆菌生长和丙酮酸代谢的影响[J]. 生物加工过程, 2013, 11(6): 15-18. SONG CH, ZHANG WG. Effects of aceE gene knockout on growing and pyruvate biosynthesis of E. coli[J]. Chinese Journal of Bioprocess Engineering, 2013, 11(6): 15-18(in Chinese)
    [37] 伍小颖. 多杀菌素高产菌株育种及培养基优化[D]. 长沙: 湖南农业大学硕士学位论文, 2017. WU XY. Breeding of spinosad high-production strain and optimization of fermentation[D]. Changsha: Master’s Thesis of Hunan Agricultural University, 2017(in Chinese)
    [38] XUE CY, ZHANG XM, YU ZR, ZHAO FL, WANG ML, LU WY. Up-regulated spinosad pathway coupling with the increased concentration of acetyl-CoA and malonyl-CoA contributed to the increase of spinosad in the presence of exogenous fatty acid[J]. Biochemical Engineering Journal, 2013, 81: 47-53.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王晓宇,蔡朝辉,乔长晟,薛超友. 基于转录组学分析刺糖多孢菌多杀菌素合成代谢途径关键酶基因挖掘[J]. 微生物学报, 2024, 64(10): 3762-3779

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 383
  • HTML阅读次数: 327
  • 引用次数: 0
历史
  • 收稿日期:2024-03-24
  • 最后修改日期:2024-06-28
  • 在线发布日期: 2024-09-30
  • 出版日期: 2024-10-04
文章二维码