黄河内蒙古段水体氧化亚氮溶存浓度、水-气界面排放通量和沉积物微生物群落结构
作者:
基金项目:

国家自然科学基金(42167027);内蒙古自治区自然科学基金(2020MS04013);内蒙古自治区水环境安全协同创新中心(XTCX003);内蒙古自治区教育厅资助内蒙古师范大学优秀研究生科研创新基金(2023HHYC012);内蒙古师范大学支持在校优秀学生提升基本科研能力基金(2024BKCX06,2024BKCX07)


Dissolved concentration of nitrous oxide,water-air interface emission flux,and sediment microbial community structure in the Inner Mongolia section of the Yellow River
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [51]
  • |
  • 相似文献 [15]
  • | | |
  • 文章评论
    摘要:

    【目的】基于全球气候治理背景以及黄河流域在我国生态文明建设中的重要地位,本研究于2023年7月选择黄河内蒙古段流域为对象,测定流域内表层沉积物微生物群落结构与多样性、水体理化性质及水-气界面氧化亚氮(nitrous oxide,N2O)气体通量。【方法】使用静态箱-气相色谱仪法对黄河内蒙古段水体N2O溶存浓度、水-气界面N2O排放通量进行探究,使用高通量测序分析表层沉积物。【结果】结果表明黄河内蒙古段水体N2O溶存浓度变化范围在0.547 8−0.598 2 mg/m3之间,均值为0.574 1 mg/m3,水-气界面N2O排放通量(FN2O)变化范围为−3.645 3−4.392 5 mg/(m2·d),均值为1.086 1 mg/(m2·d),总体表现为大气N2O的“源”。FN2O和pH呈极显著正相关、和电位呈显著负相关。表层沉积物中细菌共有7 784个操作分类单元(operational taxonomic unit,OTU),其中变形菌门(Proteobacteriota)以平均35.13%的丰度成为最优势菌群。氨氧化古菌(ammonia-oxidizing archaea,AOA)相关基因丰度较低,检测到116个OTUs,unclassified_d__Unclassified为优势菌属(平均丰度为31.69%)。反硝化细菌共有3 660个OTUs,优势菌属为unclassified_k__norank_d__Bacteria(平均丰度为63.12%)。【结论】由于黄河内蒙古段N2O相关数据较少,因此本研究结果对填补江河N2O数据具有积极意义,为进一步了解沉积物微生物群落结构及功能菌在黄河治理中的应用提供参考,有助于黄河的保护和净化计划。

    Abstract:

    [Objective]Within the framework of global climate governance and considering the pivotal role of the Yellow River basin in China’s ecological progress,this study focused on the Inner Mongolia segment of the Yellow River in July 2023.[Methods]We collected the surface sediment,water,and gas samples,with the aim of investigating the dissolved nitrous oxide (N2O) concentration in the water,the N2O emission flux (FN2O) at the water-air interface,and the microbial community composition and diversity in surface sediments.[Results] The results revealed that the dissolved nitrous oxide (N2O) concentration in the water of this segment varied between 0.547 8 mg/m3 and 0.598 2 mg/m3,with an average of 0.574 1 mg/m3.The FN2O at the water-air interface ranged from−3.645 3 mg/(m2·d) to 4.392 5 mg/(m2·d),averaging 1.086 1 mg/(m2·d),which suggested this area was a net source of atmospheric N2O.FN2O showed a significantly positive correlation with pH and a significantly negative correlation with potential.The surface sediments harbored 7 784 operational taxonomic units (OTUs),with Proteobacteria (average abundance of 35.13%) being dominant.Ammonia-oxidizing archaea (AOA),a category of nitrifying bacteria,presented low abundance,with 116 OTUs among which unclassified_d__Unclassified(average abundance of 31.69%) was the dominant genus.For denitrifying bacteria,3 660 OTUs were identified,with unclassified_k__norank_d__Bacteria(average abundance of 63.12%) being the dominant genus.In view of the scarcity of N2O data for the Inner Mongolia section of the Yellow River,the findings of this study enrich the N2O data repository of the Yellow River.[Conclusion] This study not only augments our understanding of the microbial community structure and functionality in sediments but also supports the conservation and purification of the Yellow River.

    参考文献
    [1] 陈红彦. 碳中和目标下全球气候治理的竞争转向与中国对策[J]. 法商研究, 2023, 40(3): 3-16. CHEN HY. The shift of competition of global climate governance under the carbon neutrality goal and China’s countermeasures[J]. Studies in Law and Business, 2023, 40(3): 3-16(in Chinese)
    [2] IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, In press, 2021.
    [3] MONTZKA SA, DLUGOKENCKY EJ, BUTLER JH. Non-CO2 greenhouse gases and climate change[J]. Nature, 2011, 476: 43-50.
    [4] BEAULIEU JJ, NIETCH CT, YOUNG JL. Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin[J]. Journal of Geophysical Research: Biogeosciences, 2015, 120(10): 1995-2010.
    [5] 张树礼. 加快推进内蒙古黄河流域生态环境保护和高质量发展[J]. 实践(思想理论版), 2021(7): 35-38. ZHANG SL. Accelerate the ecological environment protection and high-quality development of the Yellow River Basin in Inner Mongolia[J]. Practice (Theory of Thought Edition), 2021(7): 35-38(in Chinese)
    [6] WANG JF, WANG GQ, ZHANG SB, XIN Y, JIANG CR, LIU SD, HE XJ, McDOWELL WH, XIA XH. Indirect nitrous oxide emission factors of fluvial networks can be predicted by dissolved organic carbon and nitrate from local to global scales[J]. Global Change Biology, 2022, 28(24): 7270-7285.
    [7] HU HW, CHEN DL, HE JZ. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates[J]. FEMS Microbiology Reviews, 2015, 39(5): 729-749.
    [8] SUN X, JAYAKUMAR A, TRACEY JC, WALLACE E, KELLY CL, CASCIOTTI KL, WARD BB. Microbial N2O consumption in and above marine N2O production hotspots[J]. The ISME Journal, 2021, 15: 1434-1444.
    [9]
    [9] QUICK AM, REEDER WJ, FARRELL TB, TONINA D, FERIS KP, BENNER SG. Nitrous oxide from streams and rivers: a review of primary biogeochemical pathways and environmental variables[J]. Earth-Science Reviews, 2019, 191: 224-262.
    [10] STEIN LY, KLOTZ MG. The nitrogen cycle[J]. Current Biology, 2016, 26(3): R94-R98.
    [11] ZHANG WL, ZHU MJ, LI Y, WANG C, QIAN B, NIU LH, WANG PF, GU JF, YANG N. How fluvial inputs directly and indirectly affect the ecological status of different lake regions: a bio-assessment framework[J]. Journal of Hydrology, 2020, 582: 124502.
    [12] PROSSER JI. Ecosystem processes and interactions in a morass of diversity[J]. FEMS Microbiology Ecology, 2012, 81(3): 507-519.
    [13] FERIS KP, RAMSEY PW, RILLIG M, MOORE JN, GANNON JE, HOLBEN WE. Determining rates of change and evaluating group-level resiliency differences in hyporheic microbial communities in response to fluvial heavy-metal deposition[J]. Applied and Environmental Microbiology, 2004, 70(8): 4756-4765.
    [14] ZHANG S, LI KX, HU JM, WANG F, CHEN DH, ZHANG ZJ, LI T, LI LF, TAO J, LIU D, CHE RX. Distinct assembly mechanisms of microbial sub-communities with different rarity along the Nu River[J]. Journal of Soils and Sediments, 2022, 22(5): 1530-1545.
    [15] TAKAKI Y, HATTORI K, YAMASHITA Y. Factors controlling the spatial distribution of dissolved organic matter with changes in the C/N ratio from the upper to lower reaches of the Ishikari River, Japan[J]. Frontiers in Earth Science, 2022, 10: 826907.
    [16] 侯元松. 内蒙古黄河流域生态环境质量状况评价[J]. 环境与发展, 2023, 35(3): 12-17. HOU YS. Evaluation of eco-environmental quality in the Yellow River Basin of Inner Mongolia[J]. Environment and Development, 2023, 35(3): 12-17(in Chinese)
    [17] 杨帆, 苗雨青, 叶爱中, 崔乾, 孙奕琳, 罗浩, 洪炜林, 孙方虎. 巢湖水-气界面N2O通量排放特征及影响因素[J]. 湖泊科学, 2023, 35(6): 2000-2009. YANG F, MIAO YQ, YE AZ, CUI Q, SUN YL, LUO H, HONG WL, SUN FH. Characterization of N2O emission at the water-gas interface and influences of Lake Chaohu[J]. Journal of Lake Sciences, 2023, 35(6): 2000-2009(in Chinese)
    [18] WU P, LIANG SH, WANG XS, FENG YQ, McKENZIE JM. A new assessment of hydrological change in the source region of the Yellow River[J]. Water, 2018, 10(7): 877.
    [19] GAO T, WANG HL. Trends in precipitation extremes over the Yellow River Basin in north China: changing properties and causes[J]. Hydrological Processes, 2017, 31(13): 2412-2428.
    [20] ZHANG XJ, WANG GQ, XUE BL, WANG YT, WANG LB. Spatiotemporal variation of evapotranspiration on different land use/cover in the inner Mongolia reach of the Yellow River Basin[J]. Remote Sensing, 2022, 14(18): 4499.
    [21] 庞红丽, 高红山, 李富强, 张连科. 黄河宁蒙段沉积物地球化学元素组成及分布特征[J]. 中国沙漠, 2022, 42(5): 44-53. PANG HL, GAO HS, LI FQ, ZHANG LK. Geochemical element composition and spatial distribution characteristics of sediments in the Ningxia-Inner Mongolia section of the Yellow River[J]. Journal of Desert Research, 2022, 42(5): 44-53(in Chinese)
    [22] RAO GD, RAO VD, SARMA VVSS. Distribution and air–sea exchange of nitrous oxide in the coastal Bay of Bengal during peak discharge period (southwest monsoon)[J]. Marine Chemistry, 2013, 155: 1-9.
    [23] Coupe RH. Transport of nitrate in the Mississippi River in July-August 1999[J]. Annals of Environmental Science, 2013, 7(3): 31-46.
    [24] 黄向华, 曾宏达, 陈惠, 王婷婷, 杨玉盛. 基于静态箱法研究城市草坪空气负离子来源及其影响因素[J]. 应用与环境生物学报, 2021, 27(4): 949-955. HUANG XH, ZENG HD, CHEN H, WANG TT, YANG YS. Sources and influence factors of negative air ions in urban lawn based on static chamber method[J]. Chinese Journal of Applied and Environmental Biology, 2021, 27(4): 949-955(in Chinese)
    [25] JOHNSON KM, HUGHES JE, DONAGHAY PL, SIEBURTH JM. Bottle-calibration static head space method for the determination of methane dissolved in seawater[J]. Analytical Chemistry, 1990, 62(21): 2408-2412.
    [26] WANG R, ZHANG H, ZHANG W, ZHENG XH, BUTTERBACH-BAHL K, LI SQ, HAN SH. An urban polluted river as a significant hotspot for water-atmosphere exchange of CH4 and N2O[J]. Environmental Pollution, 2020, 264: 114770.
    [27] SANDER R. Compilation of Henry’s law constants (version 4.0) for water as solvent[J]. Atmospheric Chemistry and Physics, 2015, 15(8): 4399-4981.
    [28] 杨晶, 张桂玲, 赵玉川, 李佩佩. 胶州湾河口潮滩沉积物中N2O的产生和释放及其影响因素[J]. 环境科学学报, 2011, 31(12): 2723-2732. YANG J, ZHANG GL, ZHAO YC, LI PP. Production and emission of nitrous oxide from the estuarine tidal flat around Jiaozhou Bay and their influencing factors[J]. Acta Scientiae Circumstantiae, 2011, 31(12): 2723-2732(in Chinese)
    [29] 余丹, 陈光程, 陈顺洋, 陈雅萍, 陈彬, 叶勇, 侯建平. 夏季九龙江口红树林土壤-大气界面温室气体通量的研究[J]. 应用海洋学学报, 2014, 33(2): 175-182. YU D, CHEN GC, CHEN SY, CHEN YP, CHEN B, YE Y, HOU JP. Summer fluxes of atmospheric greenhouse gases from mangrove soils in Jiulongjiang Estuary[J]. Journal of Applied Oceanography, 2014, 33(2): 175-182(in Chinese)
    [30] 金宝石, 谢建国, 闫鸿远, 杨平, 曾从盛. 九龙江河口养虾塘氧化亚氮排放通量及影响因素[J]. 农业环境科学学报, 2021, 40(9): 2031-2038. JIN BS, XIE JG, YAN HY, YANG P, ZENG CS. Nitrous oxide fluxes and its influencing factors in the shrimp ponds of the Jiulong River Estuary[J]. Journal of Agro-Environment Science, 2021, 40(9): 2031-2038(in Chinese)
    [31] 廖远珊, 肖启涛, 刘臻婧, 胡正华, 张弥, 肖薇, 段洪涛. 藻型湖区氧化亚氮排放特征及其影响因素[J]. 湖泊科学, 2023, 35(2): 483-492. LIAO YS, XIAO QT, LIU ZJ, HU ZH, ZHANG M, XIAO W, DUAN HT. Nitrous oxide emission and its influencing factors at the cyanobacteria-dominated lake[J]. Journal of Lake Sciences, 2023, 35(2): 483-492(in Chinese)
    [32] ERKKILÄ KM, OJALA A, BASTVIKEN D, BIERMANN T, HEISKANEN JJ, LINDROTH A, PELTOLA O, RANTAKARI M, VESALA T, MAMMARELLA I. Methane and carbon dioxide fluxes over a lake: comparison between eddy covariance, floating chambers and boundary layer method[J]. Biogeosciences, 2018, 15(2): 429-445.
    [33] 张艳春, 张志法, 陶雅琴, 陈玉鹏, 毛旭锋. 连续筑坝湟水一级支流火烧沟对河流水-气界面温室气体通量的影响研究[J]. 生态科学, 2020, 39(5): 100-108. ZHANG YC, ZHANG ZF, TAO YQ, CHEN YP, MAO XF. Effects of cascade dams on greenhouse gases fluxes at water-air interface of the Huoshaogou River[J]. Ecological Science, 2020, 39(5): 100-108(in Chinese)
    [34] DUCHEMIN E, LUCOTTE M, CANUEL R. Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies[J]. Environmental Science & Technology, 1999, 33(2): 350-357.
    [35] 陈露, 欧光南, 何碧烟. 九龙江口水体中N2O的产生、释放和输出[J]. 海洋环境科学, 2023, 42(6): 841-852. CHEN L, OU GN, HE BY. Production, emission and export of nitrous oxide from the Jiulong River Estuary[J]. Marine Environmental Science, 2023, 42(6): 841-852(in Chinese)
    [36] 汤梦瑶, 胡晓康, 王洪伟, 王云仓, 常素云, 王松庆, 钟继承. 天津市滨海河流N2O扩散通量及控制因子[J]. 环境科学, 2022, 43(3): 1481-1491. TANG MY, HU XK, WANG HW, WANG YC, CHANG SY, WANG SQ, ZHONG JC. Diffusive fluxes and controls of N2O from coastal rivers in Tianjin city[J]. Environmental Science, 2022, 43(3): 1481-1491(in Chinese)
    [37] WELLS NS, MAHER DT, ERLER DV, HIPSEY M, ROSENTRETER JA, EYRE BD. Estuaries as sources and sinks of N2O across a land use gradient in subtropical Australia[J]. Global Biogeochemical Cycles, 2018, 32(5): 877-894.
    [38] YUAN JJ, XIANG J, LIU DY, KANG H, HE TH, KIM S, LIN YX, FREEMAN C, DING WX. Rapid growth in greenhouse gas emissions from the adoption of industrial-scale aquaculture[J]. Nature Climate Change, 2019, 9: 318-322.
    [39] YAO YZ, TIAN HQ, SHI H, PAN SF, XU RT, PAN NQ, CANADELL JG. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene[J]. Nature Climate Change, 2020, 10: 138-142.
    [40] SOUED C, del GIORGIO PA, MARANGER R. Nitrous oxide sinks and emissions in boreal aquatic networks in Québec[J]. Nature Geoscience, 2016, 9: 116-120.
    [41] MUKHOPADHYA I, HANSEN R, EL-OMAR EM, HOLD GL. IBD: what role do Proteobacteria play?[J]. Nature Reviews Gastroenterology & Hepatology, 2012, 9: 219-230.
    [42] OSPINA-BETANCOURTH C, ACHARYA K, ALLEN B, ENTWISTLE J, HEAD IM, SANABRIA J, CURTIS TP. Enrichment of nitrogen-fixing bacteria in a nitrogen-deficient wastewater treatment system[J]. Environmental Science & Technology, 2020, 54(6): 3539-3548.
    [43] WU QL, CHEN YW, XU KD, LIU ZW, HAHN MW. Intra-habitat heterogeneity of microbial food web structure under the regime of eutrophication and sediment resuspension in the large subtropical shallow Lake Taihu, China[J]. Hydrobiologia, 2007, 581(1): 241-254.
    [44] ZWART G, CRUMP BC, KAMST-VAN AGTERVELD MP, HAGEN F, HAN SK. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers[J]. Aquatic Microbial Ecology, 2002, 28: 141-155.
    [45] HAN MZ, GONG YH, ZHOU CY, ZHANG JQ, WANG Z, NING K. Comparison and Interpretation of Taxonomical Structure of Bacterial Communities in Two Types of Lakes on Yun-Gui Plateau of China[J]. Scientific Reports, 2016, 6: 30616.
    [46] 史传奇, 胡宝忠, 于少鹏, 孟博, 杨春雪, 刘嘉, 丁俊男. 不同处理条件下金鱼藻净水效果与微生物群落变化[J]. 浙江农业学报, 2020, 32(6): 1070-1081. SHI CQ, HU BZ, YU SP, MENG B, YANG CX, LIU J, DING JN. Water purification effect of Ceratophyllum demersum L. and change of microbial community under different treatments[J]. Acta Agriculturae Zhejiangensis, 2020, 32(6): 1070-1081(in Chinese)
    [47] 张紫薇, 陈召莹, 张甜娜, 周石磊, 崔建升, 罗晓. 基于高通量绝对定量测序解析岗南水库微生物群落的时空分布特征及关键驱动因素[J]. 环境科学学报, 2022, 42(2): 224-239. ZHANG ZW, CHEN ZY, ZHANG TN, ZHOU SL, CUI JS, LUO X. Spatiotemporal characteristics and key driving factors of microbial community evolution based on high-throughput absolute quantification sequencing in the Gangnan Reservoir[J]. Acta Scientiae Circumstantiae, 2022, 42(2): 224-239(in Chinese)
    [48] 周莉娜, 苏润华, 马思佳, 何甦, 任洪强, 丁丽丽. 基于PLFA法分析亚硝氮、硝氮和氨氮对厌氧微生物细菌群落的影响[J]. 环境科学学报, 2016, 36(2): 499-505. ZHOU LN, SU RH, MA SJ, HE S, REN HQ, DING LL. Effects of nitrite, nitrate and ammonia nitrogen on anaerobic microbial community characterized by using phospholipid fatty acid PLFA method[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 499-505(in Chinese)
    [49] HERLEMANN DPR, LABRENZ M, JÜRGENS K, BERTILSSON S, WANIEK JJ, ANDERSSON AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea[J]. The ISME Journal, 2011, 5(10): 1571-1579.
    [50] BJØRLYKKE K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins[J]. Sedimentary Geology, 2014, 301: 1-14.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

乌音嘎,王晓丽,阿如汗,吴霞,虹霞,贺晓雯,刘娜. 黄河内蒙古段水体氧化亚氮溶存浓度、水-气界面排放通量和沉积物微生物群落结构[J]. 微生物学报, 2024, 64(10): 3780-3797

复制
分享
文章指标
  • 点击次数:97
  • 下载次数: 157
  • HTML阅读次数: 237
  • 引用次数: 0
历史
  • 收稿日期:2024-03-26
  • 最后修改日期:2024-07-19
  • 在线发布日期: 2024-09-30
  • 出版日期: 2024-10-04
文章二维码