金霉素添加对有机培肥土壤中磷循环微生物介导的磷素转化和有效性的影响
作者:
基金项目:

国家自然科学基金区域联合基金(U20A2047);国家自然科学基金(32272800,32002126);重庆市自然科学基金面上项目(CSTB2023NSCQ-MSX0507)


Effects of chlortetracycline addition on phosphorus transformation and availability mediated by phosphorus cycling microorganisms in soil applied with organic fertilizer
Author:
  • YIN Jiangqin

    YIN Jiangqin

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Jiaying

    LI Jiaying

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Shunli

    LIU Shunli

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIE Xiaoyu

    XIE Xiaoyu

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHEN Xinping

    CHEN Xinping

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China;Key laboratory of Low-carbon Green Agriculture in Southwestern, Southwest University, Chongqing 400715, China;Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LANG Ming

    LANG Ming

    Chongqing Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Southwest University, Chongqing 400715, China;Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400715, China;Key laboratory of Low-carbon Green Agriculture in Southwestern, Southwest University, Chongqing 400715, China;Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    【目的】探究不同浓度金霉素的添加对有机培肥土壤中参与无机磷溶解和有机磷矿化微生物群落特征及其介导的土壤磷素转化和有效性机制的影响。【方法】选取重庆市潼南区紫色土为基质土进行盆栽试验,外源添加有机肥(鸡粪),设置3个浓度的金霉素处理:不添加金霉素(0.0 mg/kg,No-CTC),低浓度金霉素(0.1 mg/kg,Low-CTC),高浓度金霉素(4.0 mg/kg,High-CTC)处理,在辣椒(‘辛香8号’)种植后第7天和第30天采集土样,利用Real-time qPCR、Illumina Miseq高通量测序技术,结合基于生物有效性磷组分(biologically based phosphorus,BBP)的磷分级等方法,探究不同浓度金霉素添加对无机磷溶解和有机磷矿化关键基因(分别为pqqCphoD基因)细菌的群落特征及其介导的土壤磷素转化机制的影响。【结果】在第7天仅高浓度金霉素处理增加了土壤Citrate-P和Enzyme-P含量,相对于未添加金霉素分别增加了8.2%和44.0%;高、低浓度金霉素处理在第30天均增加了Enzyme-P含量,相较于未添加金霉素处理分别增加了65.6%和44.0%。金霉素抑制了土壤碱性磷酸酶(alkaline phosphatase,ALP)活性,显著影响了含pqqCphoD基因细菌的群落结构。基于Mantel检验结果表明,第7天Citrate-P与含pqqC基因的优势物种假单胞菌属(Pseudomonas)、地嗜皮菌属(Geodermatophilus)和糖丝菌属(Saccharothrix)显著相关,而含phoD基因的优势物种慢生根瘤菌属(Bradyrhizobium)、剑菌属(Ensifer)和斯克尔曼氏菌属(Skermanella)与Enzyme-P显著相关,随着处理时间的增加,其相关性均减弱。含pqqC基因细菌群落的网络平均度(average degree)在第7天低浓度金霉素处理时增加,高浓度时则降低,在第30天高、低浓度金霉素处理下其网络平均度均降低;然而,含phoD基因细菌群落的网络平均度在第7天随金霉素浓度增加而减弱,而第30天呈相反趋势。【结论】金霉素添加通过调控含pqqCphoD基因细菌群落结构,以及酸、碱性磷酸酶活性,显著影响了土壤Enzyme-P,进而影响了土壤中磷素的形态和有效性。本研究加深了金霉素污染对土壤-植物系统中磷循环相关微生物群落变化的认识,对抗生素施用下土壤中养分的高效利用提供科学依据。

    Abstract:

    [Objective] To explore the effects of different concentrations of chlortetracycline on the characteristics of microbial communities involved in inorganic phosphorus (Pi) dissolution and organic phosphorus (Po) mineralization in the soil applied with organic fertilizer,focusing on soil P transformation and availability.[Methods] The purple soil collected from Tongnan District of Chongqing was used for a pot experiment with the addition of chicken manure as the organic fertilizer.Three chlortetracycline treatments (No-CTC,Low-CTC,and High-CTC) were designed with the addition levels of 0.0,0.1,and 4.0 mg/kg,respectively.The soil samples were collected on days 7(D7) and 30(D30) after pepper (‘Xinxiang 8’) was planted.Real-time qPCR and Illumina MiSeq high-throughput sequencing were employed to analyze the community characteristics of the bacteria carrying the key genes (pqqC and phoD) of Pi dissolution and Po mineralization,respectively.Furthermore,the sequencing results and biologically based P (BBP) fractionation were employed to examine the effects of CTC addition on soil P transformation.[Results] High-CTC increased the content of Citrate-P and Enzyme-P by 8.2% and 44.0%,respectively,compared with No-CTC on D7.Low-CTC and High-CTC increased the content of Enzyme-P by 44.0% and 65.6%,respectively,compared with No-CTC on D30.The addition of CTC suppressed alkaline phosphatase (ALP) activity and affected the community structures of pqqC and phoD-harboring bacteria in the soil.The Mantel test results showed that Citrate-P was significantly associated with the dominant pqqC-carrying taxa Pseudomonas,Geodermatophilus,and Saccharothrix on D7.The dominant phoD-carrying taxa Bradyrhizobium,Ensifer,and Skermanella exhibited notable correlations with Enzyme-P on D7,and such correlations weakened over time.The average degree of the community network of the bacteria carrying pqqC increased in the Low-CTC treatment and decreased in the High-CTC treatment on D7.The average degree of this network decreased in High-CTC and Low-CTC treatments on D30.The average degree of the community network of the bacteria carrying phoD decreased with the increase in CTC addition on D7,while this trend was opposite on D30.[Conclusion] The addition of CTC significantly affected soil Enzyme-P by regulating the community structure ofpqqC- and phoD-carrying bacteria as well as acid phosphatase (ACP) and ALP activities,thereby affecting the P forms and availability in the soil.This study contributes to a deeper understanding of alterations in microbial communities associated with P cycling in the soil-plant system contaminated by CTC.Moreover,it lays a scientific foundation for enhancing nutrient utilization efficiency in the soil applied with antibiotics.

    参考文献
    [1] TIAN SY, ZHU BJ, YIN R, WANG MW, JIANG YJ, ZHANG CZ, LI DM, CHEN XY, KARDOL P, LIU MQ. Organic fertilization promotes crop productivity through changes in soil aggregation[J]. Soil Biology and Biochemistry, 2022, 165: 108533.
    [2] FAN KK, DELGADO-BAQUERIZO M, GUO XS, WANG DZ, ZHU YG, CHU HY. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. The ISME Journal, 2021, 15(2): 550-561.
    [3] SONG WF, SHU AP, LIU JA, SHI WC, LI MC, ZHANG WX, LI ZZ, LIU GR, YUAN FS, ZHANG SX, LIU ZB, GAO Z. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil[J]. Pedosphere, 2022, 32(4): 637-648.
    [4] LI S, YAO Q, LIU JJ, WEI D, ZHOU BK, ZHU P, CUI XA, JIN J, LIU XB, WANG GH. Profiles of antibiotic resistome with animal manure application in black soils of Northeast China[J]. Journal of Hazardous Materials, 2020, 384: 121216.
    [5] 王媛媛, 苏红, 刘德举, 王岩, 王伟涛, 贾智宁, 翟海华, 李卫华, 王储, 滕翔雁, 曲志娜. 2018−2020年全球兽用抗菌药物使用情况分析[J]. 中国动物检疫, 2022, 39(12): 72-77. WANG YY, SU H, LIU DJ, WANG Y, WANG WT, JIA ZN, CUI HH, LI WH, WANG C, TENG XY, QU ZN. Analysis on the Global Use of Veterinary Antibiotics from 2018 to 2020[J]. China Animal Health Inspection, 2022, 39(12): 72-77.
    [6] LI C, CHEN JY, WANG JH, MA ZH, HAN P, LUAN YX, LU AX. Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment[J]. The Science of the Total Environment, 2015, 521/522: 101-107.
    [7] HOU J, WAN WN, MAO DQ, WANG C, MU QH, QIN SY, LUO Y. Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China[J]. Environmental Science and Pollution Research, 2015, 22(6): 4545-4554.
    [8] 刘吉强, 诸葛玉平, 崔丽娜. 外源四环素对土壤酶活性和油菜品质的影响[J]. 应用生态学报, 2009, 20(4): 943-948. LIU JQ, ZHUGE YP, CUI LN. Effects of exogenous tetracycline on rape soil enzyme activity and rape quality[J]. Chinese Journal of Applied Ecology, 2009, 20(4): 943-948(in Chinese)
    [9] 杨思德, 常兴平, 潘政, 李明堂, 翁莉萍, 李永涛, 赵丽霞. 蚯蚓对金霉素污染土壤酶活性和微生物群落的影响[J]. 农业环境科学学报, 2021, 40(6): 1268-1280. YANG SD, CHANG XP, PAN Z, LI MT, WENG LP, LI YT, ZHAO LX. Effects of earthworms on soil enzyme activities and microbial communities of chlortetracycline-contaminated soils[J]. Journal of Agro-Environment Science, 2021, 40(6): 1268-1280.
    [10] ZIELEZNY Y, GROENEWEG J, VEREECKEN H, TAPPE W. Impact of sulfadiazine and chlortetracycline on soil bacterial community structure and respiratory activity[J]. Soil Biology and Biochemistry, 2006, 38(8): 2372-2380.
    [11] SANTÁS-MIGUEL V, ARIAS-ESTÉVEZ M, DÍAZ-RAVIÑA M, FERNÁNDEZ-SANJURJO MJ, ÁLVAREZ-RODRÍGUEZ E, NÚÑEZ-DELGADO A, FERNÁNDEZ-CALVIÑO D. Effect of oxytetracycline and chlortetracycline on bacterial community growth in agricultural soils[J]. Agronomy, 2020, 10(7): 1011.
    [12] FANG H, HAN LX, CUI YL, XUE YF, CAI L, YU YL. Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments[J]. The Science of the Total Environment, 2016, 572: 1203-1212.
    [13] SONG TT, MUHAMMAD FS, WANG R, LI BX, ZHANG ZY, WU DM, ZHU CX, LI HN. Distribution of antibiotic resistant bacteria in different soil types following manure application[J]. Soil Ecology Letters, 2024, 6: 230210.
    [14] ZHOU ZH, WANG CK, JIANG LF, LUO YQ. Trends in soil microbial communities during secondary succession[J]. Soil Biology and Biochemistry, 2017, 115: 92-99.
    [15] HARTMAN WH, YE RZ, HORWATH WR, TRINGE SG. A genomic perspective on stoichiometric regulation of soil carbon cycling[J]. The ISME Journal, 2017, 11(12): 2652-2665.
    [16] VERSHININA OA, ZNAMENSKAYA LV. The pho regulons of bacteria[J]. Microbiology, 2002, 71(5): 497-511.
    [17] HU MJ, PEÑUELAS J, SARDANS J, TONG C, CHANG CT, CAO WZ. Dynamics of phosphorus speciation and the phoD phosphatase gene community in the rhizosphere and bulk soil along an estuarine freshwater-oligohaline gradient[J]. Geoderma, 2020, 365: 114236.
    [18] HU W, ZHANG YP, RONG XM, FEI JC, PENG JW, LUO GW. Coupling amendment of biochar and organic fertilizers increases maize yield and phosphorus uptake by regulating soil phosphatase activity and phosphorus-acquiring microbiota[J]. Agriculture, Ecosystems & Environment, 2023, 355: 108582.
    [19] BI QF, LI KJ, ZHENG BX, LIU XP, LI HZ, JIN BJ, DING K, YANG XR, LIN XY, ZHU YG. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil[J]. The Science of the Total Environment, 2020, 703: 134977.
    [20] OLSEN SR, SOMMERS LE. Methods of Soil Analysi. Part 2: Chemical and Microbiological Properities[M]//Agronomy No. 9. Madison, WI: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 1982: 403-430.
    [21] DELUCA TH, GLANVILLE HC, HARRIS M, EMMETT BA, PINGREE MRA, DE SOSA LL, CERDA-MORENO C, JONES DL. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes, Soil Biology and Biochemistry, 2015, 88: 110-119.
    [22] ZHENG BX, HAO XL, DING K, ZHOU GW, CHEN QL, ZHANG JB, ZHU YG. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil[J]. Scientific Report, 2017, 7: 42284.
    [23] SAKURAI M, WASAKI J, TOMIZAWA Y, SHINANO T, OSAKI M. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter[J]. Soil Science and Plant Nutrition, 2008, 54(1): 62-71.
    [24] LIU B, LI YX, ZHANG XL, WANG J, GAO M. Effects of chlortetracycline on soil microbial communities: comparisons of enzyme activities to the functional diversity via Biolog EcoPlates™[J]. European Journal of Soil Biology, 2015, 68: 69-76.
    [25] 李梦云. 金霉素与土霉素对生物除磷效果及微生物活性的联合作用效应[D]. 合肥: 安徽建筑大学硕士学位论文, 2022. LI MY. Combined effect of chlortetracycline and oxytetracycline on biological phosphorus removal and microbial activity[D]. Hefei: Master’s Thesis of Anhui Jianzhu University, 2022(in Chinese).
    [26] CUI H, OU Y, WANG LX, YAN BX, BAO MW, GUAN FC. Tetracycline hydrochloride-stressed changes in phosphorus fractions during swine manure composting: emphasize on phosphorus functional genes[J]. Process Safety and Environmental Protection, 2022, 168: 336-343.
    [27] HU YJ, XIA YH, SUN Q, LIU KP, CHEN XB, GE TD, ZHU BL, ZHU ZK, ZHANG ZH, SU YR. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils[J]. The Science of the Total Environment, 2018, 628/629: 53-63.
    [28] 苏卫华, 李昊明, 张春燕, 陈新平, 郎明. 供磷水平和根际效应协同影响含碱性磷酸酶基因细菌群落的网络复杂性和稳定性[J]. 微生物学报, 2023, 63(7): 2776-2790. SU WH, LI HM, ZHANG CY, CHEN XP, LANG M. Phosphorus gradient fertilization and rhizosphere effect co-determine phoD-harboring bacterial network complexity and stability[J]. Acta Microbiologica Sinica, 2023, 63(7): 2776-2790(in Chinese)
    [29] 曾悦, 黄红英, 吴华山. 畜禽粪污抗生素对土壤生物学效应的Meta分析[J]. 农业环境科学学报, 2021, 40(5): 1043-1050. ZENG Y, HUANG HY, WU HS. Meta-analysis was used to analyze the biological effects of livestock manure antibiotics on soil[J]. Journal of Agro-Environment Science, 2021, 40(5): 1043-1050(in Chinese)
    [30] TOPP E, CHAPMAN R, DEVERS-LAMRANI M, HARTMANN A, MARTI R, MARTIN-LAURENT F, SABOURIN L, SCOTT A, SUMARAH M. Accelerated Biodegradation of Veterinary Antibiotics in Agricultural Soil following Long-Term Exposure, and Isolation of a Sulfamethazine-degrading sp.[J]. Journal of Environmental Quality, 2013, 42(1): 173-178.
    [31] HUND-RINKE K, SIMON M, LUKOW T. Effects of tetracycline on the soil microflora: function, diversity, resistance[J]. Journal of Soils and Sediments, 2004, 4(1): 11-16.
    [32] SCHMITT H, MARTINALI B, van BEELEN P, SEINEN W. On the limits of toxicant-induced tolerance testing: cotolerance and response variation of antibiotic effects[J]. Environmental Toxicology and Chemistry, 2006, 25(7): 1961-1968.
    [33] FANG H, HAN YL, YIN YM, PAN X, YU YL. Variations in dissipation rate, microbial function and antibiotic resistance due to repeated introductions of manure containing sulfadiazine and chlortetracycline to soil[J]. Chemosphere, 2014, 96: 51-56.
    [34] PEÑUELAS J, POULTER B, SARDANS J, CIAIS P, van der VELDE M, BOPP L, BOUCHER O, GODDERIS Y, HINSINGER P, LLUSIA J, NARDIN E, VICCA S, OBERSTEINER M, JANSSENS IA. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe[J]. Nature Communications, 2013, 4: 2934.
    [35] WANG L, WANG J, YUAN J, TANG ZH, WANG JD, ZHANG YC. Long-term organic fertilization strengthens the soil phosphorus cycle and phosphorus availability by regulating the pqqC- and phoD-harboring bacterial communities[J]. Microbial Ecology, 2023, 86(4): 2716-2732.
    [36] LIU WB, LING N, LUO GW, GUO JJ, ZHU C, XU QC, LIU MQ, SHEN QR, GUO SW. Active phoD-harboring bacteria are enriched by long-term organic fertilization[J]. Soil Biology and Biochemistry, 2021, 152: 108071.
    [37] QIU DY, XU NH, ZHANG Q, ZHOU WY, WANG Y, ZHANG ZY, YU YT, LU T, SUN LW, ZHOU NY, PEIJNENBURG WJGM, QIAN HF. Negative effects of abamectin on soil microbial communities in the short term[J]. Frontiers in Microbiology, 2022, 13: 1053153.
    [38] ZHANG ZK, HE HH, HAN T, TIAN XM, PANG JY, LAMBERS H. Soil oxytetracycline alters the effects of phosphate fertilisation and Bacillus amyloliquefaciens on the bacterial community of Medicago sativa rhizosphere[J]. Applied Soil Ecology, 2023, 187: 104861.
    [39] MAKHALANYANE TP, VALVERDE A, BIRKELAND NK, CARY SC, MARLA TUFFIN I, COWAN DA. Evidence for successional development in Antarctic hypolithic bacterial communities[J]. The ISME Journal, 2013, 7(11): 2080-2090.
    [40] ZHUANG QL, YUAN HY, QI JQ, SUN ZR, TAO BX, ZHANG BH. Phosphorus fertiliser application mitigates the negative effects of microplastic on soil microbes and rice growth[J]. Journal of Hazardous Materials, 2024, 465: 133278.
    [41] CHEN YH, LI SS, LIU N, HE H, CAO XY, LV C, ZHANG K, DAI JL. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil[J]. Environmental Science and Pollution Research, 2021, 28(18): 23036-23047.
    [42] 崔熙雯, 林小锐, 李家兵, 张虹, 韩永和. 抗逆放线菌的多样性、功能特性及其在环境修复中的应用[J]. 微生物学报, 2023, 63(5): 1930-1943. CUI XW, LIN XR, LI JB, ZHANG H, HAN YH. Diversity, functional characteristics, and environmental remediation potential of stress-tolerant actinomycetes[J]. Acta Microbiologica Sinica, 2023, 63(5): 1930-1943(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

尹江琴,李佳颖,刘顺莉,谢小雨,陈新平,郎明. 金霉素添加对有机培肥土壤中磷循环微生物介导的磷素转化和有效性的影响[J]. 微生物学报, 2024, 64(10): 3980-3997

复制
分享
文章指标
  • 点击次数:202
  • 下载次数: 212
  • HTML阅读次数: 304
  • 引用次数: 0
历史
  • 收稿日期:2024-04-27
  • 最后修改日期:2024-07-19
  • 在线发布日期: 2024-09-30
  • 出版日期: 2024-10-04
文章二维码