基于益生菌口服药物递送系统的研究进展
作者:
基金项目:

国家重点研发计划(2021YFC2102700);国家自然科学基金(32272269)


Research progress in oral delivery systems with probiotics as carriers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [144]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    随着当今人们对健康的不断重视,益生菌因其安全、有益于肠道健康的特点逐渐进入人们的视野,并成为食品、医药等领域的热点。然而在口服给药方面,选择使用一种安全、方便、稳定的载体是一个难题。以益生菌为载体的口服给药系统具有优异的安全性和稳定性,同时又可以保护被递送药物通过复杂的体内环境而不受破坏。本文综述了5种常见的基于益生菌的口服药物递送方式:芽孢表面展示、酵母微胶囊、重组益生菌表达、细菌样颗粒和细菌影,并详细介绍了它们各自的结构和优缺点,为口服递送载体的开发奠定了坚实的理论基础。

    Abstract:

    With the increasing emphasis on health, probiotics have garnered increasing attention due to their safe and beneficial features for intestinal health and have become a hot spot in the fields of food and medicine. In terms of oral drug delivery, it is difficult to select a safe, convenient, and stable carrier. Probiotics can be used as carriers to deliver drugs through the complex in vivo environment without damage and have excellent safety and stability. This review describes the structures, advantages, and disadvantages of five common probiotic-based oral drug delivery approaches: display on spore surface, yeast microcapsules, recombinant probiotic expression, bacterium-like particles, and bacterial ghost, aiming to provide options for the application of oral delivery carriers.

    参考文献
    [1] HOTEL AC, CORDOBA A. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria[J]. Prevention, 2001, 5(1): 1-10.
    [2] YOHA KS, NIDA S, DUTTA S, MOSES JA, ANANDHARAMAKRISHNAN C. Targeted delivery of probiotics: perspectives on research and commercialization[J]. Probiotics and Antimicrobial Proteins, 2022, 14(1): 15-48.
    [3] SANDERS ME, AKKERMANS LMA, HALLER D, HAMMERMAN C, HEIMBACH J, HÖRMANNSPERGER G, HUYS G, LEVY DD, LUTGENDORFF F, MACK D, PHOTHIRATH P, SOLANO-AGUILAR G, VAUGHAN E. Safety assessment of probiotics for human use[J]. Gut Microbes, 2010, 1(3): 164-185.
    [4] MILNER E, STEVENS B, AN M, LAM V, AINSWORTH M, DIHLE P, STEARNS J, DOMBROWSKI A, REGO D, SEGARS K. Utilizing probiotics for the prevention and treatment of gastrointestinal diseases[J]. Frontiers in Microbiology, 2021, 12: 689958.
    [5] JAKUBCZYK D, LESZCZYŃSKA K, GÓRSKA S. The effectiveness of probiotics in the treatment of inflammatory bowel disease (IBD)-a critical review[J]. Nutrients, 2020, 12(7): 1973.
    [6] 徐康, 王哲, 薛志朋, 王家朋, 徐振上, 王婷. 益生菌缓解或治疗炎症性肠病的作用及机制研究进展[J]. 食品工业科技, 2022, 43(20): 414-420. XU K, WANG Z, XUE ZP, WANG JP, XU ZS, WANG T. Effect and mechanism of probiotics in alleviating or treating inflammatory bowel disease[J]. Science and Technology of Food Industry, 2022, 43(20): 414-420(in Chinese).
    [7] LEGESSE BEDADA T, FETO TK, AWOKE KS, GAREDEW AD, YIFAT FT, BIRRI DJ. Probiotics for cancer alternative prevention and treatment[J]. Biomedicine & Pharmacotherapy, 2020, 129: 110409.
    [8] TERPOU A, PAPADAKI A, LAPPA IK, KACHRIMANIDOU V, BOSNEA LA, KOPSAHELIS N. Probiotics in food systems: significance and emerging strategies towards improved viability and delivery of enhanced beneficial value[J]. Nutrients, 2019, 11(7): 1591.
    [9] SHOKRYAZDAN P, FASELEH JAHROMI M, LIANG JB, HO YW. Probiotics: from isolation to application[J]. Journal of the American College of Nutrition, 2017, 36(8): 666-676.
    [10] PUEBLA-BARRAGAN S, REID G. Probiotics in cosmetic and personal care products: trends and challenges[J]. Molecules, 2021, 26(5): 1249.
    [11] EI-SAADONY MT, ALAGAWANY M, PATRA AK, KAR I, TIWARI R, DAWOOD MAO, DHAMA K, ABDEL-LATIF HMR. The functionality of probiotics in aquaculture: an overview[J]. Fish & Shellfish Immunology, 2021, 117: 36-52.
    [12] SUEZ J, ZMORA N, SEGAL E, ELINAV E. The pros, cons, and many unknowns of probiotics[J]. Nature Medicine, 2019, 25(5): 716-729.
    [13] ZHANG L, WANG SL, ZHANG MH, SUN J. Nanocarriers for oral drug delivery[J]. Journal of Drug Targeting, 2013, 21(6): 515-527.
    [14] NESLIHAN GURSOY R, BENITA S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs[J]. Biomedicine & Pharmacotherapy, 2004, 58(3): 173-182.
    [15] 赵特, 邹鹏飞, 李佳欣, 高春生, 李志平. 自组装多肽用于药物递送的研究进展[J]. 军事医学, 2023, 47(10): 783-787. ZHAO T, ZOU PF, LI JX, GAO CS, LI ZP. Progress in self-assembling peptides for drug delivery[J]. Military Medical Sciences, 2023, 47(10): 783-787(in Chinese).
    [16] MEI L, ZHANG ZP, ZHAO LY, HUANG LQ, YANG XL, TANG JT, FENG SS. Pharmaceutical nanotechnology for oral delivery of anticancer drugs[J]. Advanced Drug Delivery Reviews, 2013, 65(6): 880-890.
    [17] BHUTANI U, BASU T, MAJUMDAR S. Oral drug delivery: conventional to long acting new-age designs[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 162: 23-42.
    [18] LI WS, SU ZG, HAO MX, JU CY, ZHANG C. Cytopharmaceuticals: an emerging paradigm for drug delivery[J]. Journal of Controlled Release, 2020, 328: 313-324.
    [19] LIANG J, YAN H, PULIGUNDLA P, GAO XL, ZHOU YB, WAN XC. Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: a review[J]. Food Hydrocolloids, 2017, 69: 286-292.
    [20] LEONG KW, SUNG HW. Nanoparticle- and biomaterials-mediated oral delivery for drug, gene, and immunotherapy[J]. Advanced Drug Delivery Reviews, 2013, 65(6): 757-758.
    [21] JIANG BY, LI ZD, OU BM, DUAN QD, ZHU GQ. Targeting ideal oral vaccine vectors based on probiotics: a systematical view[J]. Applied Microbiology and Biotechnology, 2019, 103(10): 3941-3953.
    [22] WANG YW, WANG DH, LV HJ, DONG QC, LI JJ, GENG WT, WANG JJ, LIU FF, JIA LG, WANG YP. Modulation of the gut microbiota and glycometabolism by a probiotic to alleviate amyloid accumulation and cognitive impairments in AD rats[J]. Molecular Nutrition & Food Research, 2022, 66(19): e2200265.
    [23] RICCA E, BACCIGALUPI L, CANGIANO G, de FELICE M, ISTICATO R. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis[J]. Microbial Cell Factories, 2014, 13: 115.
    [24] WELLS JM, MERCENIER A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria[J]. Nature Reviews Microbiology, 2008, 6(5): 349-362.
    [25] MEDINA M, VINTIÑI E, VILLENA J, RAYA R, ALVAREZ S. Lactococcus lactis as an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections[J]. Bioengineered Bugs, 2010, 1(5): 313-325.
    [26] HE L, YANG HJ, TANG JL, LIU ZD, CHEN YY, LU BH, HE HC, TANG SJ, SUN YJ, LIU F, DING XZ, ZHANG YM, HU SB, XIA LQ. Intestinal probiotics E. coli Nissle 1917 as a targeted vehicle for delivery of p53 and Tum-5 to solid tumors for cancer therapy[J]. Journal of Biological Engineering, 2019, 13: 58.
    [27] SHANK EA, KOLTER R. Extracellular signaling and multicellularity in Bacillus subtilis[J]. Current Opinion in Microbiology, 2011, 14(6): 741-747.
    [28] ISTICATO R. Bacterial spore-based delivery system: 20 years of a versatile approach for innovative vaccines[J]. Biomolecules, 2023, 13(6): 947.
    [29] SELLA SRBR, VANDENBERGHE LPS, SOCCOL CR. Life cycle and spore resistance of spore-forming Bacillus atrophaeus[J]. Microbiological Research, 2014, 169(12): 931-939.
    [30] TAN IS, RAMAMURTHI KS. Spore formation in Bacillus subtilis[J]. Environmental Microbiology Reports, 2014, 6(3): 212-225.
    [31] SETLOW P. Spore resistance properties[J]. Microbiology Spectrum, 2014, 2(5): 201-205.
    [32] CAO J, YU ZM, LIU WY, ZHAO JX, ZHANG H, ZHAI QX, CHEN W. Probiotic characteristics of Bacillus coagulans and associated implications for human health and diseases[J]. Journal of Functional Foods, 2020, 64: 103643.
    [33] YIN L, MENG Z, ZHANG YX, HU KK, CHEN WY, HAN KB, WU BY, YOU R, LI CH, JIN Y, GUAN YQ. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer[J]. Journal of Controlled Release, 2018, 271: 31-44.
    [34] SUN HC, LIN ZP, ZHAO L, CHEN TJ, SHANG M, JIANG HY, TANG ZL, ZHOU XY, SHI MC, ZHOU LN, REN PL, QU HL, LIN JS, LI XR, XU J, HUANG Y, YU XB. Bacillus subtilis spore with surface display of paramyosin from Clonorchis sinensis potentializes a promising oral vaccine candidate[J]. Parasites & Vectors, 2018, 11(1): 156.
    [35] KANG M, FENG F, GE Q, ZHU F, CHEN L, LV P, MA S, YAO Q, CHEN K. Display of quintuple glucagon-like peptide 1(28-36) nonapeptide on Bacillus subtilis spore for oral administration in the treatment of type 2 diabetes[J]. Journal of Applied Microbiology, 2021, 130(2): 314-324.
    [36] ZHANG GY, AN YF, ZABED H, GUO Q, YANG MM, YUAN J, WEN L, SUN WJ, QI XH. Bacillus subtilis spore surface display technology: a review of its development and applications[J]. Journal of Microbiology and Biotechnology, 2019, 29(2): 179-190.
    [37] YANG Y, ZHANG GH, WU J, CHEN XQ, TONG DN, YANG YM, SHI HZ, YAO CQ, ZHUANG LN, WANG JB, DU AF. Recombinant HcGAPDH protein expressed on probiotic Bacillus subtilis spores protects sheep from Haemonchus contortus infection by inducing both humoral and cell-mediated responses[J]. mSystems, 2020, 5(3): e00239-20.
    [38] CHEN C, LI YL, LV FL, XU LD, HUANG YW. Surface display of peptides corresponding to the heptad repeat 2 domain of the feline enteric coronavirus spike protein on Bacillus subtilis spores elicits protective immune responses against homologous infection in a feline aminopeptidase-N-transduced mouse model[J]. Frontiers in Immunology, 2022, 13: 925922.
    [39] 杨云川. 枯草芽孢杆菌表面展示AIV HA和GPV VP3及其免疫原性的初步评价[D]. 重庆: 西南大学硕士学位论文, 2023. YANG YC. Preliminary evaluation of AIV HA and GPV VP3 displayed on the surface of Bacillus subtilis and their immunogenicity[D]. Chongqing: Master’s Thesis of Southwest University, 2023(in Chinese).
    [40] 宋庆龄. 基于益生菌芽孢的口服递送系统用于结肠炎和结肠癌治疗研究[D]. 郑州: 郑州大学博士学位论文, 2023. SONG QL. Oral delivery system based on probiotic spores for the treatment of colitis and colon cancer[D]. Zhengzhou: Doctoral Dissertation of Zhengzhou University, 2023(in Chinese).
    [41] SONG M, HONG HA, HUANG JM, COLENUTT C, KHANG DD, van ANH NGUYEN T, PARK SM, SHIM BS, SONG HH, CHEON IS, JANG JE, CHOI JA, CHOI YK, STADLER K, CUTTING SM. Killed Bacillus subtilis spores as a mucosal adjuvant for an H5N1 vaccine[J]. Vaccine, 2012, 30(22): 3266-3277.
    [42] SUN HC, SHANG M, TANG ZL, JIANG HY, DONG HM, ZHOU XY, LIN ZP, SHI CB, REN PL, ZHAO L, SHI MC, ZHOU LN, PAN HJ, CHANG OQ, LI XR, HUANG Y, YU XB. Oral delivery of Bacillus subtilis spores expressing Clonorchis sinensis paramyosin protects grass carp from cercaria infection[J]. Applied Microbiology and Biotechnology, 2020, 104(4): 1633-1646.
    [43] SUN R, ZHANG M, CHEN H, WEI Y, NING DG. Germination-arrest Bacillus subtilis spores as an oral delivery vehicle of grass carp reovirus (GCRV) vp7 antigen augment protective immunity in grass carp (Ctenopharyngodon idella)[J]. Genes, 2020, 11(11): 1351.
    [44] GONÇALVES G, SANTOS RA, COUTINHO F, PEDROSA N, CURADO M, MACHADO M, COSTAS B, BONNEVILLE L, SERRANO M, CARVALHO AP, DÍAZ-ROSALES P, OLIVA-TELES A, COUTO A, SERRA CR. Oral vaccination of fish against vibriosis using spore-display technology[J]. Frontiers in Immunology, 2022, 13: 1012301.
    [45] ZHOU ZW, GONG ST, LI XM, YANG YY, GUAN RL, ZHOU S, YAO SW, XIE YQ, OU ZY, ZHAO JH, LIU ZG. Expression of Helicobacter pylori urease B on the surface of Bacillus subtilis spores[J]. Journal of Medical Microbiology, 2015, 64(Pt 1): 104-110.
    [46] OH Y, KIM JA, KIM CH, CHOI SK, PAN JG. Bacillus subtilis spore vaccines displaying protective antigen induce functional antibodies and protective potency[J]. BMC Veterinary Research, 2020, 16(1): 259.
    [47] de ALMEIDA MEM, ALVES KCS, de VASCONCELOS MGS, PINTO TS, GLÓRIA JC, CHAVES YO, NEVES WLL, TARRAGÔ AM, de SOUZA NETO JN, ASTOLFI-FILHO S, PONTES GS, da SILVA BALIEIRO AA, ISTICATO R, RICCA E, MARIÚBA LAM. Bacillus subtilis spores as delivery system for nasal Plasmodium falciparum circumsporozoite surface protein immunization in a murine model[J]. Scientific Reports, 2022, 12(1): 1531.
    [48] SANTOS FDS, MAZZOLI A, MAIA AR, SAGGESE A, ISTICATO R, LEITE F, IOSSA S, RICCA E, BACCIGALUPI L. A probiotic treatment increases the immune response induced by the nasal delivery of spore-adsorbed TTFC[J]. Microbial Cell Factories, 2020, 19(1): 42.
    [49] TANG ZL, WU ZS, SUN HC, ZHAO L, SHANG M, SHI MC, JIANG HY, LIN ZP, ZHOU XY, LI XR, YU XB, HUANG Y. The storage stability of Bacillus subtilis spore displaying cysteine protease of Clonorchis sinensis and its effect on improving the gut microbiota of mice[J]. Applied Microbiology and Biotechnology, 2021, 105(6): 2513-2526.
    [50] LEE NK, KIM WS, PAIK HD. Bacillus strains as human probiotics: characterization, safety, microbiome, and probiotic carrier[J]. Food Science and Biotechnology, 2019, 28(5): 1297-1305.
    [51] DUC LH, HONG HA, ATKINS HS, FLICK-SMITH HC, DURRANI Z, RIJPKEMA S, TITBALL RW, CUTTING SM. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen[J]. Vaccine, 2007, 25(2): 346-355.
    [52] CHEN HY, ZHANG TX, JIA JR, VASTERMARK A, TIAN R, NI Z, CHEN Z, CHEN KP, YANG SL. Expression and display of a novel thermostable esterase from Clostridium thermocellum on the surface of Bacillus subtilis using the CotB anchor protein[J]. Journal of Industrial Microbiology & Biotechnology, 2015, 42(11): 1439-1448.
    [53] SAGGESE A, BACCIGALUPI L, DONADIO G, RICCA E, ISTICATO R. The bacterial spore as a mucosal vaccine delivery system[J]. International Journal of Molecular Sciences, 2023, 24(13): 10880.
    [54] DONG H, HUANG YM, YAO SW, LIANG BS, LONG Y, XIE YQ, MAI JL, GONG ST, ZHOU ZW. The recombinant fusion protein of cholera toxin B and neutrophil-activating protein expressed on Bacillus subtilis spore surface suppresses allergic inflammation in mice[J]. Applied Microbiology and Biotechnology, 2017, 101(14): 5819-5829.
    [55] VETRÁKOVÁ A, CHOVANOVÁ RK, RECHTORÍKOVÁ R, KRAJČÍKOVÁ D, BARÁK I. Bacillus subtilis spores displaying RBD domain of SARS-CoV-2 spike protein[J]. Computational and Structural Biotechnology Journal, 2023, 21: 1550-1556.
    [56] ISTICATO R, SIREC T, TREPPICCIONE L, MAURANO F, de FELICE M, ROSSI M, RICCA E. Non-recombinant display of the B subunit of the heat labile toxin of Escherichia coli on wild type and mutant spores of Bacillus subtilis[J]. Microbial Cell Factories, 2013, 12: 98.
    [57] HINC K, ISTICATO R, DEMBEK M, KARCZEWSKA J, IWANICKI A, PESZYŃSKA-SULARZ G, de FELICE M, OBUCHOWSKI M, RICCA E. Expression and display of UreA of Helicobacter acinonychis on the surface of Bacillus subtilis spores[J]. Microbial Cell Factories, 2010, 9: 2.
    [58] CHERNOFF YO, GRIZEL AV, RUBEL AA, ZELINSKY AA, CHANDRAMOWLISHWARAN P, CHERNOVA TA. Application of yeast to studying amyloid and prion diseases[J]. Advances in Genetics, 2020, 105: 293-380.
    [59] KARIM A, GERLIANI N, AÏDER M. Kluyveromyces marxianus: an emerging yeast cell factory for applications in food and biotechnology[J]. International Journal of Food Microbiology, 2020, 333: 108818.
    [60] FENG XX, XIE Q, XU HB, ZHANG TT, LI XN, TIAN YM, LAN HB, KONG L, ZHANG ZP. Yeast microcapsule mediated natural products delivery for treating ulcerative colitis through anti-inflammatory and regulation of macrophage polarization[J]. ACS Applied Materials & Interfaces, 2022, 14(27): 31085-31098.
    [61] WU Y, LI PY, JIANG ZZ, SUN XL, HE HQ, YAN PJ, XU Y, LIU Y. Bioinspired yeast-based β-glucan system for oral drug delivery[J]. Carbohydrate Polymers, 2023, 319: 121163.
    [62] BASTOS R, OLIVEIRA PG, GASPAR VM, MANO JF, COIMBRA MA, COELHO E. Brewer’s yeast polysaccharides: a review of their exquisite structural features and biomedical applications[J]. Carbohydrate Polymers, 2022, 277: 118826.
    [63] LIU Y, YANG HS, ZHU JH, YANG ZF, ZHAO LL, ZHANG X, ZHANG HX. Novel albendazole-glucan particles for enhancing intestinal absorption and improving hepatic targeting[J]. Annals of Translational Medicine, 2022, 10(24): 1312.
    [64] 刘瑛琪, 李静如, 孟繁, 邢昊楠, 郑爱萍. 酵母微囊作为口服药物递送载体的研究进展[J]. 中国药房, 2023, 34(16): 2022-2027. LIU YQ, LI JR, MENG F, XING HN, ZHENG AP. Research progress of yeast microcapsules as oral drug delivery carrier[J]. China Pharmacy, 2023, 34(16): 2022-2027(in Chinese).
    [65] ZHOU X, LING KJ, LIU MY, ZHANG XJ, DING J, DONG Y, LIANG ZQ, LI JJ, ZHANG JX. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route[J]. Theranostics, 2019, 9(22): 6568-6586.
    [66] SABU C, RAGHAV D, JIJITH US, MUFEEDHA P, NASEEF PP, RATHINASAMY K, PRAMOD K. Bioinspired oral insulin delivery system using yeast microcapsules[J]. Materials Science and Engineering: C, 2019, 103: 109753.
    [67] 王大壮. 酵母微囊包覆纳米氧化锌载药递送系统的构建及抗肿瘤作用研究[D]. 沈阳: 辽宁大学硕士学位论文, 2022. WANG DZ. Construction of drug delivery system of nano-zinc oxide coated with yeast microcapsules and its anti-tumor effect[D]. Shenyang: Master’s Thesis of Liaoning University, 2022(in Chinese).
    [68] SHI GR, LIU YT, HE ZJ, ZHOU JH. Chemical treatment and chitosan coating of yeast cells to improve the encapsulation and controlled release of bovine serum albumin[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(6): 1-9.
    [69] SALOŇ I, HANUŠ J, ULBRICH P, ŠTěPÁNEK F. Suspension stability and diffusion properties of yeast glucan microparticles[J]. Food and Bioproducts Processing, 2016, 99: 128-135.
    [70] TAN C, WANG J, SUN BG. Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins[J]. Food Chemistry, 2021, 357: 129652.
    [71] HE Y, CHEN QW, YU JX, QIN SY, LIU WL, MA YH, CHEN XS, ZHANG AQ, ZHANG XZ, CHENG YJ. Yeast cell membrane-camouflaged PLGA nanoparticle platform for enhanced cancer therapy[J]. Journal of Controlled Release, 2023, 359: 347-358.
    [72] SOTO ER, SPECHT CA, LEE CK, LEVITZ SM, OSTROFF GR. One step purification-vaccine delivery system[J]. Pharmaceutics, 2023, 15(5): 1390.
    [73] PAN Y, LI XP, KANG TY, MENG H, CHEN ZL, YANG L, WU Y, WEI YQ, GOU ML. Efficient delivery of antigen to DCs using yeast-derived microparticles[J]. Scientific Reports, 2015, 5: 10687.
    [74] IVANOVA E. Yeasts in nanotechnology-enabled oral vaccine and gene delivery[J]. Bioengineered, 2021, 12(1): 8325-8335.
    [75] ZHANG L, ZHANG W, PENG H, LI YK, LENG TT, XIE CX, ZHANG L. Oral gene therapy of HFD-obesity via nonpathogenic yeast microcapsules mediated shRNA delivery[J]. Pharmaceutics, 2021, 13(10): 1536.
    [76] ZHOU X, ZHANG XJ, HAN SL, DOU Y, LIU MY, ZHANG L, GUO JW, SHI Q, GONG GH, WANG RB, HU J, LI XH, ZHANG JX. Yeast microcapsule-mediated targeted delivery of diverse nanoparticles for imaging and therapy via the oral route[J]. Nano Letters, 2017, 17(2): 1056-1064.
    [77] SOTO ER, KIM HC, YAGITA H, de JESUS M, OSTROFF GR. Polydopamine coating of glucan particles increases uptake into peyer’s patches[J]. ACS Applied Bio Materials, 2019, 2(9): 3748-3754.
    [78] REIS SF, MARTINS VJ, BASTOS R, LIMA T, CORREIA VG, PINHEIRO BA, SILVA LM, PALMA AS, FERREIRA P, VILANOVA M, COIMBRA MA, COELHO E. Feasibility of brewer’s spent yeast microcapsules as targeted oral carriers[J]. Foods, 2023, 12(2): 246.
    [79] ZHANG L, PENG H, FENG M, ZHANG W, LI YK. Yeast microcapsule-mediated oral delivery of IL-1β shRNA for post-traumatic osteoarthritis therapy[J]. Molecular Therapy-Nucleic Acids, 2021, 23: 336-346.
    [80] 德艳艳, 张艳花, 廖洪, 龙谭. 重组益生菌的生物学潜在应用[J]. 中国预防兽医学报, 2021, 43(4): 444-449. DE YY, ZHANG YH, LIAO H, LONG T. Potential biological applications of recombinant probiotics[J]. Chinese Journal of Preventive Veterinary Medicine, 2021, 43(4): 444-449(in Chinese).
    [81] KUMAR M, YADAV AK, VERMA V, SINGH B, MAL G, NAGPAL R, HEMALATHA R. Bioengineered probiotics as a new hope for health and diseases: an overview of potential and prospects[J]. Future Microbiology, 2016, 11(4): 585-600.
    [82] 陈少俊, 李刚, 奈子达, 刘娣, 姜新鹏. 基因编辑益生菌在动物肠道健康上的研究及应用[J]. 中国畜牧兽医, 2023, 50(3): 1016-1024. CHEN SJ, LI G, NAI ZD, LIU D, JIANG XP. Research and application of gene-edited probiotics in animal intestinal health[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(3): 1016-1024(in Chinese).
    [83] 岳梦云. 工程益生菌L. lactis MG1363-pMG36e-GLP-1通过抑制铁死亡改善帕金森病的机制研究[D]. 南昌: 南昌大学硕士学位论文, 2023. YUE MY. Study on the mechanism of L. lactis MG1363-pMG36e-GLP-1, an engineering probiotic, in improving Parkinson’s disease by inhibiting iron death[D]. Nanchang: Master’s Thesis of Nanchang University, 2023(in Chinese).
    [84] 赵瑞. 基于Escherichia coli nissle 1917构建表达尿酸氧化酶以及氧循环系统的工程益生菌用于治疗高尿酸血症的研究[D]. 济南: 山东大学博士学位论文, 2022. ZHAO R. Study on the treatment of hyperuricemia by constructing engineering probiotics expressing uric acid oxidase and oxygen circulation system based on Escherichia coli Nissle 1917[D]. Jinan: Doctoral Dissertation of Shandong University, 2022(in Chinese).
    [85] MATHIPA-MDAKANE MG, THANTSHA MS. Lacticaseibacillus rhamnosus: a suitable candidate for the construction of novel bioengineered probiotic strains for targeted pathogen control[J]. Foods, 2022, 11(6): 785.
    [86] WYSZYŃSKA AK, GODLEWSKA R. Lactic acid bacteria-a promising tool for controlling chicken Campylobacter infection[J]. Frontiers in Microbiology, 2021, 12: 703441.
    [87] TAGHINEZHAD-S S, MOHSENI AH, BERMÚDEZ-HUMARÁN LG, CASOLARO V, CORTES-PEREZ NG, KEYVANI H, SIMAL-GANDARA J. Probiotic-based vaccines may provide effective protection against COVID-19 acute respiratory disease[J]. Vaccines, 2021, 9(5): 466.
    [88] MUÑOZ C, GONZÁLEZ-LORCA J, PARRA M, SOTO S, VALDES N, SANDINO AM, VARGAS R, GONZÁLEZ A, TELLO M. Lactococcus lactis expressing type I interferon from Atlantic salmon enhances the innate antiviral immune response in vivo and in vitro[J]. Frontiers in Immunology, 2021, 12: 696781.
    [89] HUANG QT, NIU TM, ZOU BS, WANG JH, XIN JH, NIU H, LI N, JIANG YX, BAO JF, ZHANG D, FENG XZ, SUN TT, WANG X, YANG KD, WANG Y, YANG GL, ZHAO DD, WANG CF. Lactobacillus plantarum surface-displayed ASFV (p14.5) can stimulate immune responses in mice[J]. Vaccines, 2022, 10(3): 355.
    [90] ZHAO ZL, WANG H, ZHANG DX, GUAN YC, SIDDIQUI SA, XIAO FS, CONG B. Oral vaccination with recombinant Lactobacillus casei expressing Aeromonas hydrophila Aha1 against A. hydrophila infections in common carps[J]. Virulence, 2022, 13(1): 794-807.
    [91] 孟薇. 表面展示禽流感病毒抗原酿酒酵母菌株的构建及其生物学特性研究[D]. 天津: 天津大学硕士学位论文, 2020. MENG W. Construction and biological characteristics of Saccharomyces cerevisiae strain with surface display of avian influenza virus antigen[D]. Tianjin: Master’s Thesis of Tianjin University, 2020(in Chinese).
    [92] 张小禹. 表达具核梭杆菌外膜FomA蛋白的新型乳酸菌的构建及其抑制炎症性肠病的机制研究[D]. 长春: 吉林大学博士学位论文, 2023. ZHANG XY. Construction of a novel Lactobacillus expressing FomA protein in the outer membrane of Fusobacterium nucleatum and its inhibitory effect on inflammatory bowel disease[D]. Changchun: Doctoral Dissertation of Jilin University, 2023(in Chinese).
    [93] PAN N, LIU BH, BAO XM, ZHANG HC, SHENG SX, LIANG YC, PAN HT, WANG X. Oral delivery of novel recombinant Lactobacillus elicit high protection against Staphylococcus aureus pulmonary and skin infections[J]. Vaccines, 2021, 9(9): 984.
    [94] ZHI WJ, CHEN H, BAI BR, JIA ZP, PAN XH, WANG B, KONG R, LIU QJ, MA CL, MA DX. Combined oral immunization with probiotics Entercoccus faecalis delivering surface-anchored Eimeria tenella proteins provide protective efficacies against homologous infection in chickens[J]. Frontiers in Immunology, 2022, 13: 1042143.
    [95] SHIRAKAWA T, KITAGAWA K. Antitumor effect of oral cancer vaccine with Bifidobacterium delivering WT1 protein to gut immune system is superior to WT1 peptide vaccine[J]. Human Vaccines & Immunotherapeutics, 2017, 14(1): 159-162.
    [96] NIU H, XING JH, ZOU BS, SHI CW, HUANG HB, JIANG YL, WANG JZ, CAO X, WANG N, ZENG Y, YANG WT, YANG GL, WANG CF. Immune evaluation of recombinant Lactobacillus plantarum with surface display of HA1-DCpep in mice[J]. Frontiers in Immunology, 2021, 12: 800965.
    [97] CHEN YP, HUA XJ, REN XY, DUAN KX, GAO SA, SUN JH, FENG Y, ZHOU Y, GUAN X, LI DC, WANG N, LI JH, YANG JW, XIA D, SHI W, LIU M. Oral immunization with recombinant Lactobacillus casei displayed AHA1-CK6 and VP2 induces protection against infectious pancreatic necrosis in rainbow trout (Oncorhynchus mykiss)[J]. Fish & Shellfish Immunology, 2020, 100: 18-26.
    [98] MA ST, WANG L, HUANG XW, WANG XN, CHEN S, SHI W, QIAO XY, JIANG YP, TANG LJ, XU YG, LI YJ. Oral recombinant Lactobacillus vaccine targeting the intestinal microfold cells and dendritic cells for delivering the core neutralizing epitope of porcine epidemic diarrhea virus[J]. Microbial Cell Factories, 2018, 17: 20.
    [99] LI HJ, YANG BT, SUN YF, ZHAOT, HAO ZP, GU W, SUN MX, CONG W, KANG YH. Oral vaccination with recombinant Lactobacillus casei with surface displayed OmpK fused to CTB as an adjuvant against Vibrio mimicus infection in Carassius auratus[J]. Fish & Shellfish Immunology, 2023, 135: 108659.
    [100] CHUNG Y, RYU Y, AN BC, YOON Y S, CHOI O, KIM TY, YOON J, AHN JY, PARK HJ, KWON SK, KIM JF, CHUNG MJ. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota[J]. Microbiome, 2021, 9(1): 122.
    [101] ZENG Z, YU R, ZUO FL, ZHANG B, PENG DJ, MA HQ, CHEN SW. Heterologous expression and delivery of biologically active exendin-4 by Lactobacillus paracasei L14[J]. PloS One, 2016, 11(10): e0165130.
    [102] LV PH, ZHANG XS, SONG MZ, HAO GJ, WANG FK, SUN SH. Oral administration of recombinant Bacillus subtilis expressing a multi-epitope protein induces strong immune responses against Salmonella enteritidis[J]. Veterinary Microbiology, 2023, 276: 109632.
    [103] YUAN SL, DONG M, ZHANG HL, XU HD, WANG Q, YAN CL, YE RC, JIANG XX, ZHOU HQ, CHEN L, CHENG J, XIE W, JIN WZ. Oral delivery of a Lactococcus lactis expressing extracellular TGFβR2 alleviates hepatic fibrosis[J]. Applied Microbiology and Biotechnology, 2021, 105(14): 6007-6018.
    [104] LIN ZQ, TANG YQ, CHEN ZR, LI SM, XU XY, HOU XF, CHEN ZH, WEN JJ, ZENG WS, MENG XJ, FAN HY. Soluble CD80 oral delivery by recombinant Lactococcus suppresses tumor growth by enhancing antitumor immunity[J]. Bioengineering & Translational Medicine, 2023, 8(4): e10533.
    [105] CHAU ECT, KWONG TC, PANG CK, CHAN LT, CHAN AML, YAO XQ, TAM JSL, CHAN SW, LEUNG GPH, TAI WCS, KWAN YW. A novel probiotic-based oral vaccine against SARS-CoV-2 Omicron variant B.1.1.529[J]. International Journal of Molecular Sciences, 2023, 24(18): 13931.
    [106] HOU J, LU Y, LIU HY, MA YJ, XING Y, ZHANG Y, LI TM, CAO RY, JIN L, WU J, ZONG L, LIU JJ. Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice[J]. Vaccine, 2011, 29(24): 4102-4109.
    [107] ZHANG RG, PENG XY, DUAN GC, SHI QF, CHEN SY, WANG C, FAN QT, XI YL. An engineered Lactococcus lactis strain exerts significant immune responses through efficient expression and delivery of Helicobacter pylori Lpp20 antigen[J]. Biotechnology Letters, 2016, 38(12): 2169-2175.
    [108] GRANGETTE C, MÜLLER-ALOUF H, GOUDERCOURT D, GEOFFROY MC, TURNEER M, MERCENIER A. Mucosal immune responses and protection against tetanus toxin after intranasal immunization with recombinant Lactobacillus plantarum[J]. Infection and Immunity, 2001, 69(3): 1547-1553.
    [109] YANG GL, YAO JY, YANG WT, JIANG YL, DU JF, HUANG HB, GU W, HU JT, YE LP, SHI CW, SHAN BL, WANG CF. Construction and immunological evaluation of recombinant Lactobacillus plantarum expressing SO7 of Eimeria tenella fusion DC-targeting peptide[J]. Veterinary Parasitology, 2017, 236: 7-13.
    [110] AI CQ, ZHANG QX, REN CC, WANG G, LIU XM, TIAN FW, ZHAO JX, ZHANG H, CHEN YQ, CHEN W. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model[J]. PLoS One, 2014, 9(10): e109461.
    [111] 曾珠. 乳酸菌作为药物分子黏膜投递载体的研究进展[J]. 生物工程学报, 2021, 37(7): 2272-2282. ZENG Z. Advances in the use of lactic acid bacteria as mucosal delivery vectors of therapeutic molecules[J]. Chinese Journal of Biotechnology, 2021, 37(7): 2272-2282(in Chinese).
    [112] REN CC, ZHANG QX, WANG G, AI CQ, HU MS, LIU XM, TIAN FW, ZHAO JX, CHEN YQ, WANG M, ZHANG H, CHEN W. Modulation of peanut-induced allergic immune responses by oral lactic acid bacteria-based vaccines in mice[J]. Applied Microbiology and Biotechnology, 2014, 98(14): 6353-6364.
    [113] 王建忠, 赵建伟, 王春凤. 细菌样颗粒: 新型乳酸菌表面展示技术及其应用[J]. 微生物学报, 2019, 59(3): 411-419. WANG JZ, ZHAO JW, WANG CF. Bacterium-like particles: a novel surface display technology for lactic acid bacteria and its application[J]. Acta Microbiologica Sinica, 2019, 59(3): 411-419(in Chinese).
    [114] 吕瑞卿, 焦翠翠, 张梦瑶, 王化磊, 张海丽. GEM-PA表面展示系统研究进展[J]. 广东畜牧兽医科技, 2023, 48(1): 51-56. LÜ RQ, JIAO CC, ZHANG MY, WANG HL, ZHANG HL. Research progress on GEM-PA surface display system[J]. Guangdong Journal of Animal and Veterinary Science, 2023, 48(1): 51-56(in Chinese).
    [115] 刘润杭. 基于病原菌制备的细菌样颗粒(pBLP)用作抗原递送载体和疫苗增效剂的效果分析[D]. 哈尔滨: 东北农业大学硕士学位论文, 2023. LIU RH. Effect analysis of bacterial-like particles (pBLP) prepared from pathogenic bacteria as antigen delivery carrier and vaccine synergist[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2023(in Chinese).
    [116] 李政蓉. 尼帕病毒性脑炎重组狂犬病病毒载体灭活疫苗和细菌样颗粒疫苗的构建与免疫原性研究[D]. 长春: 吉林大学博士学位论文, 2023. LI ZR. Construction and immunogenicity of recombinant rabies virus vector inactivated vaccine and bacterial particle vaccine against Nipah virus encephalitis[D]. Changchun: Doctoral Dissertation of Jilin University, 2023(in Chinese).
    [117] ZHOU XY, GAO MC, DE XQ, SUN T, BAI ZK, LUO JL, WANG F, GE JW. Bacterium-like particles derived from probiotics: progress, challenges and prospects[J]. Frontiers in Immunology, 2023, 14: 1263586.
    [118] LIU W, TAN ZL, LIU H, ZENG ZQ, LUO SH, YANG HM, ZHENG LF, XI T, XING YY. Nongenetically modified Lactococcus lactis-adjuvanted vaccination enhanced innate immunity against Helicobacter pylori[J]. Helicobacter, 2017, 22(5). DOI: 10.1111/hel.12426.
    [119] MAO RF, CHEN YY, WU Q, ZHANG T, DIAO EJ, WU DL, WANG M, LIU Y, LU L, CHANG X, ZHENG Y, WANG YF. Oral delivery of single-chain insulin (SCI-59) analog by bacterium-like particles (BLPs) induces oral tolerance and prevents autoimmune diabetes in NOD mice[J]. Immunology Letters, 2019, 214: 37-44.
    [120] RAMIREZ K, DITAMO Y, RODRIGUEZ L, PICKING WL, van ROOSMALEN ML, LEENHOUTS K, PASETTI MF. Neonatal mucosal immunization with a non-living, non-genetically modified Lactococcus lactis vaccine carrier induces systemic and local Th1-type immunity and protects against lethal bacterial infection[J]. Mucosal Immunology, 2010, 3(2): 159-171.
    [121] SUDO H, TOKUNOH N, TSUJII A, KAWASHIMA S, HAYAKAWA Y, FUKUSHIMA H, TAKAHASHI K, KOSHIZUKA T, INOUE N. The adjuvant effect of bacterium-like particles depends on the route of administration[J]. Frontiers in Immunology, 2023, 14: 1082273.
    [122] CHEN HJ, JI H, KONG XJ, LEI PY, YANG QS, WU W, JIN LB, SUN D. Bacterial ghosts-based vaccine and drug delivery systems[J]. Pharmaceutics, 2021, 13(11): 1892.
    [123] ALI RH, ALI ME, SAMIR R. Production and characterization of bacterial ghost vaccine against Neisseria meningitidis[J]. Vaccines, 2022, 11(1): 37.
    [124] MA Y, ZHU WJ, ZHU GS, XU Y, LI SY, CHEN R, CHEN LD, WANG JF. Efficient robust yield method for preparing bacterial ghosts by Escherichia coli phage ID52 lysis protein E[J]. Bioengineering, 2022, 9(7): 300.
    [125] HOLAY M, GUO ZY, PIHL J, HEO J, PARK JH, FANG RH, ZHANG LF. Bacteria-inspired nanomedicine[J]. ACS Applied Bio Materials, 2021, 4(5): 3830-3848.
    [126] CHEN HJ, LEI PY, JI H, MA JH, FANG YM, YU HY, DU J, QU LK, YANG QS, LUO L, ZHANG K, WU W, JIN LB, SUN D. Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish[J]. Life Sciences, 2023, 329: 121956.
    [127] SALEM-BEKHIT MM, YOUSSOF AME, ALANAZI FK, ALEANIZY FS, ABDULAZIZ A, TAHA EI, AMARA AAAF. Bacteria from infectious particles to cell based anticancer targeted drug delivery systems[J]. Pharmaceutics, 2021, 13(12): 1984.
    [128] ZHU WX, HAO LJ, LIU XL, BORRÁS-HIDALGO O, ZHANG YY. Enhanced anti-proliferative efficacy of epothilone B loaded with Escherichia coli Nissle 1917 bacterial ghosts on the HeLa cells by mitochondrial pathway of apoptosis[J]. Drug Development and Industrial Pharmacy, 2018, 44(8): 1328-1335.
    [129] PANDEY M, CHOUDHURY H, VIJAYAGOMARAN PA, LIAN PNP, NING TJ, WAI NZ, XIAN-ZHUANG N, ER CL, RAHMAH NSN, KAMARUZZAMAN NDB, MAYUREN J, CANDASAMY M, GORAIN B, CHAWLA PA, AMIN MCIM. Recent update on bacteria as a delivery carrier in cancer therapy: from evil to allies[J]. Pharmaceutical Research, 2022, 39(6): 1115-1134.
    [130] HAJAM IA, DAR PA, WON G, LEE JH. Bacterial ghosts as adjuvants: mechanisms and potential[J]. Veterinary Research, 2017, 48(1): 37.
    [131] ESLAMINEJAD T, MOSHAFI MH, HASANPORE M, AYATOLLAHI SA, ANSARI M. Evaluation of the anticandidal activity of clotrimazole using Lactobacillus caseie ghosts as biological drug carrier[J]. Daru, 2022, 30(1): 67-73.
    [132] 谢松志. 益生菌作为药物靶向递送和控释载体的研究[D]. 成都: 西南交通大学博士学位论文, 2019. XIE SZ. Study on probiotics as drug targeted delivery and controlled release carrier[D]. Chengdu: Doctoral Dissertation of Southwest Jiaotong University, 2019(in Chinese).
    [133] GANESHPURKAR A, GANESHPURKAR A, PANDEY V, AGNIHOTRI A, BANSAL D, DUBEY N. Harnessing the potential of bacterial ghost for the effective delivery of drugs and biotherapeutics[J]. International Journal of Pharmaceutical Investigation, 2014, 4(1): 1-4.
    [134] HAN BQ, XU K, LIU ZT, GE W, SHAO SM, LI PC, YAN NN, LI XY, ZHANG ZY. Oral yeast-based DNA vaccine confers effective protection from Aeromonas hydrophila infection on Carassius auratus[J]. Fish & Shellfish Immunology, 2019, 84: 948-954.
    [135] STASIŁOJĆ M, HINC K, PESZYŃSKA-SULARZ G, OBUCHOWSKI M, IWANICKI A. Recombinant Bacillus subtilis spores elicit Th1/Th17-polarized immune response in a murine model of Helicobacter pylori vaccination[J]. Molecular Biotechnology, 2015, 57(8): 685-691.
    [136] LIM J, KOH VHQ, CHO SSL, PERIASWAMY B, CHOI DPS, VACCA M, de SESSIONS PF, KUDELA P, LUBITZ W, PASTORIN G, ALONSO S. Harnessing the immunomodulatory properties of bacterial ghosts to boost the anti-mycobacterial protective immunity[J]. Frontiers in Immunology, 2019, 10: 2737.
    [137] WANG XN, WANG L, HUANG XW, MA ST, YU ML, SHI W, QIAO XY, TANG LJ, XU YG, LI YJ. Oral delivery of probiotics expressing dendritic cell-targeting peptide fused with porcine epidemic diarrhea virus COE antigen: a promising vaccine strategy against PEDV[J]. Viruses, 2017, 9(11): 312.
    [138] MAI JL, LIANG BS, XIONG ZL, AI XL, GAO F, LONG Y, YAO SW, LIU YF, GONG ST, ZHOU ZW. Oral administration of recombinant Bacillus subtilis spores expressing Helicobacter pylori neutrophil-activating protein suppresses peanut allergy via up-regulation of Tregs[J]. Clinical and Experimental Allergy, 2019, 49(12): 1605-1614.
    [139] KITAGAWA K, GONOI R, TATSUMI M, KADOWAKI M, KATAYAMA T, HASHII Y, FUJISAWA M, SHIRAKAWA T. Preclinical development of a WT1 oral cancer vaccine using a bacterial vector to treat castration-resistant prostate cancer[J]. Molecular Cancer Therapeutics, 2019, 18(5): 980-990.
    [140] ZHOU J, LI MY, CHEN QF, LI XJ, CHEN LF, DONG ZL, ZHU WJ, YANG Y, LIU Z, CHEN Q. Programmable probiotics modulate inflammation and gut microbiota for inflammatory bowel disease treatment after effective oral delivery[J]. Nature Communications, 2022, 13(1): 3432.
    [141] 张一帆, 林思思, 吴冯, 刘尽尧. 基于表面修饰的活体细菌药物及递送策略[J]. 生命科学, 2023, 35(3): 315-328. ZHANG YF, LIN SS, WU F, LIU JY. Fabrication and delivery of live bacterial therapeutics by surface modification[J]. Chinese Bulletin of Life Sciences, 2023, 35(3): 315-328(in Chinese).
    [142] PATARROYO JL, FLOREZ-ROJAS JS, PRADILLA D, VALDERRAMA-RINCÓN JD, CRUZ JC, REYES LH. Formulation and characterization of gelatin-based hydrogels for the encapsulation of Kluyveromyces lactis-applications in packed-bed reactors and probiotics delivery in humans[J]. Polymers, 2020, 12(6): 1287.
    [143] LUAN Q, ZHANG H, WANG JH, LI Y, GAN MY, DENG QC, CAI LY, TANG H, HUANG FH. Electrostatically reinforced and sealed nanocellulose-based macrosphere by alginate/chitosan multi-layer coatings for delivery of probiotics[J]. Food Hydrocolloids, 2023, 142: 108804.
    [144] CHENG QK, LIU L, XIE MZ, LI H, MA D, XUE W. A colon-targeted oral probiotics delivery system using an enzyme-triggered fuse-like microcapsule[J]. Advanced Healthcare Materials, 2021, 10(8): e2001953.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李文,刘夫锋. 基于益生菌口服药物递送系统的研究进展[J]. 微生物学报, 2024, 64(11): 4086-4105

复制
分享
文章指标
  • 点击次数:268
  • 下载次数: 352
  • HTML阅读次数: 406
  • 引用次数: 0
历史
  • 收稿日期:2024-05-16
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-11-04
文章二维码