以光催化材料构建的生物杂化体驱动氮循环的研究进展
作者:
基金项目:

国家自然科学基金(42277101);广东省珠江人才计划引进创新创业团队项目(2019ZT08L213)


Research progress in nitrogen cycling driven by biohybrids constructed with photocatalytic materials
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [49]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    氮是地球上的生物体必不可少的元素,它以不同的形态在生物圈中不断地循环转化。以光催化材料构建的生物杂化体是近年来产生的一种新的体系,它将光催化物质和电活性微生物结合起来,集成了光催化剂优异的光捕获性能,产生电子及生物高效的催化能力。因此,研究该体系在氮循环中如何发挥作用及相关机制等方面具有重要的意义。本文介绍了微生物氮循环和生物杂化体驱动的氮循环过程,重点阐述并总结了以光催化材料构建的生物杂化体驱动氮循环的几种类型、优缺点及电子传递的相关机制,并从光催化材料的性质、微生物的性质,以及如何复合光催化材料及微生物3个方面提出了今后发展的方向。

    Abstract:

    Nitrogen is an essential element for living organisms on Earth, and it is constantly recycled in the biosphere in different forms. A biohybrid constructed with photocatalytic materials is a new system produced in recent years, which combines photocatalytic materials with electroactive microorganisms, integrating the excellent light trapping performance of photocatalysts and the bioefficient catalytic capability. Therefore, it is of great significance to study how the system plays a role in nitrogen cycling and the related mechanisms. This paper introduces the microbial nitrogen cycling and the nitrogen cycling driven by biohybrids and details several types, advantages and disadvantages, and related mechanisms of electron transfer driven by biohybrids constructed with photocatalytic materials. Finally, this paper makes an outlook on the development prospects in this field from the natures and combinations of photocatalytic materials and microorganisms.

    参考文献
    [1] PAJARES S, BOHANNAN BJM. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils[J]. Frontiers in Microbiology, 2016, 7: 1045.
    [2] 祝贵兵. 陆地和淡水生态系统新型微生物氮循环研究进展[J]. 微生物学报, 2020, 60(9): 1972-1984. ZHU GB. Novel nitrogen cycles in terrestrial and freshwater ecosystems[J]. Acta Microbiologica Sinica, 2020, 60(9): 1972-1984(in Chinese).
    [3] PJEVAC P, SCHAUBERGER C, POGHOSYAN L, HERBOLD CW, van KESSEL MAHJ, DAEBELER A, STEINBERGER M, JETTEN MSM, LÜCKER S, WAGNER M, DAIMS H. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment[J]. Frontiers in Microbiology, 2017, 8: 1508.
    [4] MARTÍNEZ-ESPINOSA RM. Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments[J]. International Journal of Molecular Sciences, 2020, 21(12): 4228.
    [5] ZHANG ZY, FURMAN A. Soil redox dynamics under dynamic hydrologic regimes: a review[J]. The Science of the Total Environment, 2021, 763: 143026.
    [6] ZOU XY, CHEN CJ, WANG CH, ZHANG Q, YU ZW, WU HP, ZHUO C, ZHANG TC. Combining electrochemical nitrate reduction and anammox for treatment of nitrate-rich wastewater: a short review[J]. Science of the Total Environment, 2021, 800: 149645.
    [7] KLÜBER HD, CONRAD R. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii[J]. FEMS Microbiology Ecology, 1998, 25(4): 331-339.
    [8] WANG C, ZHANG ZH, WANG JL, WANG Q, SHANG LR. Biohybrid materials: structure design and biomedical applications[J]. Materials Today Bio, 2022, 16: 100352.
    [9] MANSOR M, XU J. Benefits at the nanoscale: a review of nanoparticle-enabled processes favouring microbial growth and functionality[J]. Environmental Microbiology, 2020, 22(9): 3633-3649.
    [10] KUMAR N, PALMER GR, SHAH V, WALKER VK. The effect of silver nanoparticles on seasonal change in Arctic tundra bacterial and fungal assemblages[J]. PLoS One, 2014, 9(6): e99953.
    [11] KHAN ST, ADIL SF, SHAIK MR, ALKHATHLAN HZ, KHAN M, KHAN M. Engineered nanomaterials in soil: their impact on soil microbiome and plant health[J]. Plants, 2021, 11(1): 109.
    [12] SATHISHKUMAR K, LI Y, SANGANYADO E. Electrochemical behavior of biochar and its effects on microbial nitrate reduction: role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395: 125077.
    [13] DESIREDDY S, POTHANAMKANDATHIL CHACKO S. A review on metal oxide (FeOx/MnOx) mediated nitrogen removal processes and its application in wastewater treatment[J]. Reviews in Environmental Science and Bio/Technology, 2021, 20(3): 697-728.
    [14] BOSCH J, LEE KY, JORDAN G, KIM KW, MECKENSTOCK RU. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans[J]. Environmental Science & Technology, 2012, 46(4): 2095-2101.
    [15] BLANKENSHIP RE, TIEDE DM, BARBER J, BRUDVIG GW, FLEMING G, GHIRARDI M, GUNNER MR, JUNGE W, KRAMER DM, MELIS A, MOORE TA, MOSER CC, NOCERA DG, NOZIK AJ, ORT DR, PARSON WW, PRINCE RC, SAYRE RT. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement[J]. Science, 2011, 332(6031): 805-809.
    [16] SHEN JY, LIU Y, QIAO L. Photodriven chemical synthesis by whole-cell-based biohybrid systems: from system construction to mechanism study[J]. ACS Applied Materials & Interfaces, 2023, 15(5): 6235-6259.
    [17] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用: 机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115. HU AD, ZHOU SG, YE J. The mechanism, progress and prospect of biohybrid mediated semi-artificial photosynthesis[J]. Progress in Chemistry, 2021, 33(11): 2103-2115(in Chinese).
    [18] YE J, HU AD, REN GP, CHEN M, ZHOU SG, HE Z. Biophotoelectrochemistry for renewable energy and environmental applications[J]. Iscience, 2021, 24(8): 102828.
    [19] SAKIMOTO KK, WONG AB, YANG PD. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016, 351(6268): 74-77.
    [20] CHEN SS, CHEN J, ZHANG LL, HUANG SF, LIU X, YANG YT, LUAN TG, ZHOU SG, NEALSON KH, RENSING C. Biophotoelectrochemical process co-driven by dead microalgae and live bacteria[J]. The ISME Journal, 2023, 17(5): 712-719.
    [21] YANG Y, LIU LN, TIAN HN, COOPER AI, SPRICK RS. Making the connections: physical and electric interactions in biohybrid photosynthetic systems[J]. Energy & Environmental Science, 2023, 16(10): 4305-4319.
    [22] ZHOU XY, ZHANG C, LI Y, XIONG XY, WANG Y, RONG SX. Promoted microbial denitrification and carbon dioxide fixation via photogenerated electrons stored in novel core/shell memory photocatalysts in darkness[J]. Chemosphere, 2022, 303: 135259.
    [23] SONG JA, LIN HC, ZHAO GZ, HUANG XW. Photocatalytic material-microorganism hybrid system and its application: a review[J]. Micromachines, 2022, 13(6): 861.
    [24] OKORO G, HUSAIN S, SAUKANI M, MUTALIK C, YOUGBARÉ S, HSIAO YC, KUO TR. Emerging trends in nanomaterials for photosynthetic biohybrid systems[J]. ACS Materials Letters, 2023, 5(1): 95-115.
    [25] BROWN KA, KING PW. Coupling biology to synthetic nanomaterials for semi-artificial photosynthesis[J]. Photosynthesis Research, 2020, 143(2): 193-203.
    [26] CHENG HY, TIAN XD, LI CH, WANG SS, SU SG, WANG HC, ZHANG B, SHARIF HMA, WANG AJ. Microbial photoelectrotrophic denitrification as a sustainable and efficient way for reducing nitrate to nitrogen[J]. Environmental Science & Technology, 2017, 51(21): 12948-12955.
    [27] ZHU NY, TANG J, TANG CL, DUAN PF, YAO LG, WU YH, DIONYSIOU DD. Combined CdS nanoparticles-assisted photocatalysis and periphytic biological processes for nitrate removal[J]. Chemical Engineering Journal, 2018, 353: 237-245.
    [28] CHEN M, ZHOU XF, YU YQ, LIU X, ZENG RJX, ZHOU SG, HE Z. Light-driven nitrous oxide production via autotrophic denitrification by self-photosensitized Thiobacillus denitrificans[J]. Environment International, 2019, 127: 353-360.
    [29] CHEN M, ZHOU XF, CHEN XY, CAI QH, ZENG RJ, ZHOU SG. Mechanisms of nitrous oxide emission during photoelectrotrophic denitrification by self-photosensitized Thiobacillus denitrificans[J]. Water Research, 2020, 172: 115501.
    [30] CHEN XY, FENG QY, CAI QH, HUANG SF, YU YQ, ZENG RJ, CHEN M, ZHOU SG. Mn3O4 nanozyme coating accelerates nitrate reduction and decreases N2O emission during photoelectrotrophic denitrification by Thiobacillus denitrificans-CdS[J]. Environmental Science & Technology, 2020, 54(17): 10820-10830.
    [31] ZHANG HJ, LIU ZH, LI Y, ZHANG C, WANG YM, ZHANG WL, WANG LF, NIU LH, WANG PF, WANG C. Intimately coupled TiO2/g-C3N4 photocatalysts and in situ cultivated biofilms enhanced nitrate reduction in water[J]. Applied Surface Science, 2020, 503: 144092.
    [32] ZHOU XY, ZHANG C, LI Y. Time-delayed photocatalysis enhanced microbial nitrate reduction via solar energy storage in carbon nitrides[J]. Chemical Engineering Journal, 2021, 417: 127904.
    [33] ZHOU XY, XIONG W, LI Y, ZHANG C, XIONG XY. A novel simultaneous coupling of memory photocatalysts and microbial communities for alternate removal of dimethyl phthalate and nitrate in water under light/dark cycles[J]. Journal of Hazardous Materials, 2022, 430: 128395.
    [34] CHEN M, CAI QH, CHEN XY, HUANG SF, FENG QY, MAJIMA T, ZENG RJ, ZHOU SG. Anthraquinone-2-sulfonate as a microbial photosensitizer and capacitor drives solar-to-N2O production with a quantum efficiency of almost unity[J]. Environmental Science & Technology, 2022, 56(8): 5161-5169.
    [35] 刁友明, 冯沁园, 黄绍福, 陈曼, 周顺桂. 蒽醌敏化型微生物光电反硝化系统固碳脱氮机制[J]. 应用与环境生物学报, 2023, 29(2): 236-243. DIAO YM, FENG QY, HUANG SF, CHEN M, ZHOU SG. Mechanism of carbon fixation in an anthraquinone-sensitized microbial photoelectrotrophic denitrification system[J]. Chinese Journal of Applied and Environmental Biology, 2023, 29(2): 236-243(in Chinese).
    [36] HUANG SF, CHEN M, DIAO YM, FENG QY, ZENG RJ, ZHOU SG. Dissolved organic matter acting as a microbial photosensitizer drives photoelectrotrophic denitrification[J]. Environmental Science & Technology, 2022, 56(7): 4632-4641.
    [37] 余萍, 李艳, 鲁安怀, 曾翠平, 王鑫, 丁竑瑞. 光电子作用下土壤微生物粪产碱杆菌反硝化性能研究[J]. 岩石矿物学杂志, 2013, 32(6): 761-766. YU P, LI Y, LU AH, ZENG CP, WANG X, DING HR. The denitrifying capability of soil microbe-Alcaligenes faecalis conducted by photoelectrons[J]. Acta Petrologica et Mineralogica, 2013, 32(6): 761-766(in Chinese).
    [38] HUANG SF, CHEN KY, CHEN XY, LIAO HP, ZENG RJ, ZHOU SG, CHEN M. Sunlight significantly enhances soil denitrification via an interfacial biophotoelectrochemical pathway[J]. Environmental Science & Technology, 2023, 57(20): 7733-7742.
    [39] 黄绍福, 林驰, 陈曼, 周顺桂. 中国内陆流域地表水体光电化学特征研究[J]. 环境科学学报, 2022, 42(12): 196-206. HUANG SF, LIN C, CHEN M, ZHOU SG. Study on photoelectrochemical characteristics of surface water in China’s inland valley[J]. Acta Scientiae Circumstantiae, 2022, 42(12): 196-206(in Chinese).
    [40] BROWN KA, HARRIS DF, WILKER MB, RASMUSSEN A, KHADKA N, HAMBY H, KEABLE S, DUKOVIC G, PETERS JW, SEEFELDT LC, KING PW. Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid[J]. Science, 2016, 352(6284): 448-450.
    [41] SAKPIROM J, KANTACHOTE D, SIRIPATTANAKUL- RATPUKDI S, McEVOY J, KHAN E. Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110[J]. Chemosphere, 2019, 223: 455-464.
    [42] WANG B, XIAO KM, JIANG ZF, WANG JF, YU JC, WONG PK. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures[J]. Energy & Environmental Science, 2019, 12(7): 2185-2191.
    [43] 黄绍福, 靖宪月, 陈曼, 周顺桂. 光驱动Pseudomonas stutzeri-CdS半人工光合系统固氮产氨效果与机制[J]. 中国科学(技术科学), 2021, 51(4): 435-445. HUANG SF, JING XY, CHEN M, ZHOU SG. Feasibility and mechanism of light-driven nitrogen reduction to ammonium by a Pseudomonas stutzeri-CdS semi-artificial photosynthetic system[J]. Scientia Sinica (Technologica), 2021, 51(4): 435-445(in Chinese).
    [44] ZENG Y, BAI HT, YU W, XIA SP, SHEN Q, HUANG YM, LV FT, BAZAN GC, WANG S. Increased nitrogenase activity in solar-driven biohybrids containing non-photosynthetic bacteria and conducting polymers[J]. Angewandte Chemie International Edition, 2023, 62(30): e202303877.
    [45] KOH S, CHOI Y, LEE I, KIM GM, KIM J, PARK YS, LEE SY, LEE DC. Light-driven ammonia production by Azotobacter vinelandii cultured in medium containing colloidal quantum dots[J]. Journal of the American Chemical Society, 2022, 144(24): 10798-10808.
    [46] GUAN X, ERŞAN S, HU XC, ATALLAH TL, XIE YC, LU ST, CAO BC, SUN JW, WU K, HUANG Y, DUAN XF, CARAM JR, YU Y, PARK JO, LIU C. Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot-bacteria hybrids[J]. Nature Catalysis, 2022, 5(11): 1019-1029.
    [47] KANG WL, MU L, HU XG. Marine colloids boost nitrogen fixation in Trichodesmium erythraeum by photoelectrophy[J]. Environmental Science & Technology, 2024, 58(21): 9236-9249.
    [48] DU Y, FENG YJ, QU YP, LIU J, REN NQ, LIU H. Electricity generation and pollutant degradation using a novel biocathode coupled photoelectrochemical cell[J]. Environmental Science & Technology, 2014, 48(13): 7634-7641.
    [49] REN ZQ, YU LQ, WANG H, LI GF, ZHANG LG, DU XN, HUANG BC, JIN RC. Inorganic quantum dots-anammox consortia hybrid for stable nitrogen elimination under high-intensity solar-simulated irradiation[J]. Water Research, 2022, 223: 119033.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

郑静淇,陈姗姗,栾天罡. 以光催化材料构建的生物杂化体驱动氮循环的研究进展[J]. 微生物学报, 2024, 64(11): 4119-4133

复制
分享
文章指标
  • 点击次数:154
  • 下载次数: 250
  • HTML阅读次数: 303
  • 引用次数: 0
历史
  • 收稿日期:2024-05-22
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-11-04
文章二维码