硫化氢对水分逆境胁迫下大豆叶际和根内微生物群落结构的影响
作者:
基金项目:

国家自然科学基金(42177329);国家重点研发计划(2023YFD1900502)


Effects of hydrogen sulfide on the structures of phyllosphere and rhizosphere microbial communities of soybean plants under drought stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 研究硫化氢(hydrogen sulfide, H2S)对水分逆境胁迫下大豆叶际和根内微生物群落结构的影响。【方法】 利用16S rRNA基因进行高通量测序,并结合生物信息学分析(α多样性、β多样性、物种组成、共现网络分析等)对NaHS处理前后大豆叶际和根内微生物群落进行分析。【结果】 在大豆正常水分情况下,NaHS的添加会降低叶际微生物生境内的多样性,增加其特有物种,并提高根内微生物的多样性,但在重度干旱下NaHS的添加并未表现出类似的效应。此外,外源添加NaHS会改变细菌共现网络属性,由于叶际和根内区域的微生物群落的聚集度都很高,接种根瘤菌和添加NaHS对其无显著影响。NaHS的添加对叶际操作分类单元(operational taxonomic unit, OTU)的相对丰度影响较小,但是导致了根内OTU的相对丰度减少,而在重度干旱下,这种现象尤为明显。无论是在叶际区域还是在根内区域,不同的微生物类群在接种根瘤菌和添加NaHS下均得到了富集。【结论】 在水分逆境胁迫下,H2S的调控对大豆叶际微生物群落结构影响不明显,但是对根内微生物群落结构的影响较为明显,通过改变细菌共现网络属性,降低根内总OTU的相对丰度,进而影响大豆对水分逆境环境的适应性。

    Abstract:

    [Objective] To investigate the effects of hydrogen sulfide (H2S) on the structures of phyllosphere and rhizosphere microbial communities of soybean plants under drought stress. [Methods] High-throughput sequencing of the 16S rRNA gene was combined with bioinformatics analyses (α and β diversity, species composition, co-occurrence networks analysis, etc.) to study the phyllosphere and rhizosphere microbial communities of soybean plants before and after NaHS treatment. [Results] For the soybean plants under normal moisture conditions, the addition of NaHS decreased the diversity and increased the endemic species of phyllosphere microbial community. The addition of NaHS increased the diversity of rhizosphere microbial community of soybean plants under normal moisture conditions but not under severe drought. In addition, exogenous addition of NaHS altered the bacterial co-occurrence network, and the microbial communities in both phyllosphere and rhizosphere were so aggregated that neither rhizobium inoculation nor NaHS addition had significant influences on them. The addition of NaHS mildly affected the relative abundance of operational taxonomic unit (OTU) in the phyllosphere and decreased the relative abundance of OTU in the rhizosphere, which was particularly pronounced under severe drought. Rhizobium inoculation and NaHS addition enriched different microbial taxa in both phyllosphere and rhizosphere. [Conclusion] Under drought stress, H2S had an insignificant modulating effect on the microbial community structure in the phyllosphere but a pronounced effect on the microbial community structure in the rhizosphere of soybean plants. H2S reduced the relative abundance of total OTU in the rhizosphere and altered the bacterial co-occurrence network, thus influencing soybean adaptation to drought stress.

    参考文献
    [1] ASHRAF M. Inducing drought tolerance in plants: recent advances[J]. Biotechnology Advances, 2010, 28(1): 169-183.
    [2] PARVIN S, UDDIN S, FITZGERALD GJ, TAUSZ-POSCH S, ARMSTRONG R, TAUSZ M. Free air CO2 enrichment (FACE) improves water use efficiency and moderates drought effect on N2 fixation of Pisum sativum L.[J]. Plant and Soil, 2019, 436(1): 587-606.
    [3] GUPTA A, RICO-MEDINA A, CAÑO-DELGADO AI. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269.
    [4] TAKAHASHI F, SUZUKI T, OSAKABE Y, BETSUYAKU S, KONDO Y, DOHMAE N, FUKUDA H, YAMAGUCHI-SHINOZAKI K, SHINOZAKI K. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556: 235-238.
    [5] LIU H, WANG JC, LIU JH, LIU T, XUE SW. Hydrogen sulfide (H2S) signaling in plant development and stress responses[J]. aBIOTECH, 2021, 2(1): 32-63.
    [6] JIN ZP, SUN LM, YANG GD, PEI YX. Hydrogen sulfide regulates energy production to delay leaf senescence induced by drought stress in Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 1722.
    [7] ZHANG H, JIAO H, JIANG CX, WANG SH, WEI ZJ, LUO JP, JONES RL. Hydrogen sulfide protects soybean seedlings against drought-induced oxidative stress[J]. Acta Physiologiae Plantarum, 2010, 32(5): 849-857.
    [8] FU PN, WANG WJ, HOU LX, LIU X. Hydrogen sulfide is involved in the chilling stress response in Vitis vinifera L.[J]. Acta Societatis Botanicorum Poloniae, 2013, 82(4): 295-302.
    [9] CHEN J, WANG WH, WU FH, YOU CY, LIU TW, DONG XJ, HE JX, ZHENG HL. Hydrogen sulfide alleviates aluminum toxicity in barley seedlings[J]. Plant and Soil, 2013, 362(1): 301-318.
    [10] SUN J, WANG RG, ZHANG X, YU YC, ZHAO R, LI ZY, CHEN SL. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells[J]. Plant Physiology and Biochemistry: PPB, 2013, 65: 67-74.
    [11] KAYA C, ASHRAF M, AKRAM NA. Hydrogen sulfide regulates the levels of key metabolites and antioxidant defense system to counteract oxidative stress in pepper (Capsicum annuum L.) plants exposed to high zinc regime[J]. Environmental Science and Pollution Research, 2018, 25(13): 12612-12618.
    [12] CHEN J, SHANG YT, WANG WH, CHEN XY, HE EM, ZHENG HL, SHANGGUAN ZP. Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings[J]. Frontiers in Plant Science, 2016, 7: 1173.
    [13] CHEN J, SHANG YT, ZHANG NN, ZHONG Y, WANG WH, ZHANG JH, SHANGGUAN Z. Sodium hydrosulfide modifies the nutrient ratios of soybean (Glycinemax) under iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(2): 305-315.
    [14] WOLFSON SJ, HITCHINGS R, PEREGRINA K, COHEN Z, KHAN S, YILMAZ T, MALENA M, GOLUCH ED, AUGENLICHT L, KELLY L. Bacterial hydrogen sulfide drives cryptic redox chemistry in gut microbial communities[J]. Nature Metabolism, 2022, 4: 1260-1270.
    [15] ZHANG J, ZHOU MJ, ZHOU H, ZHAO DD, GOTOR C, ROMERO LC, SHEN J, GE ZL, ZHANG ZR, SHEN WB, YUAN XX, XIE YJ. Hydrogen sulfide, a signaling molecule in plant stress responses[J]. Journal of Integrative Plant Biology, 2021, 63(1): 146-160.
    [16] 付榴辉. 硫化氢抑制储藏病原菌生长的效应和机制研究[D]. 合肥: 合肥工业大学硕士学位论文, 2016. FU LH. The antimicrobial effect and mechanism of H2S on the storage pathogens[D]. Hefei: Master’s Thesis of Hefei University of Technology, 2016(in Chinese).
    [17] CHEN J, WU FH, WANG WH, ZHENG CJ, LIN GH, DONG XJ, HE JX, PEI ZM, ZHENG HL. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings[J]. Journal of Experimental Botany, 2011, 62(13): 4481-4493.
    [18] LIN XY, ZHANG NN, YAO BH, ZHANG X, LIU WY, ZHANG WQ, ZHANG JH, WEI GH, CHEN J. Interactions between hydrogen sulphide and rhizobia modulate the physiological and metabolism process during water deficiency-induced oxidative defense in soybean[J]. Plant, Cell & Environment, 2022, 45(11): 3249-3274.
    [19] CALLAHAN BJ, McMURDIE PJ, ROSEN MJ, HAN AW, JOHNSON AJA, HOLMES SP. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13: 581-583.
    [20] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J, GLÖCKNER FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2013, 41(D1): D590-D596.
    [21] JIAO S, WANG JM, WEI GH, CHEN WM, LU YH. Dominant role of abundant rather than rare bacterial taxa in maintaining agro-soil microbiomes under environmental disturbances[J]. Chemosphere, 2019, 235: 248-259.
    [22] LAYEGHIFARD M, HWANG DM, GUTTMAN DS. Disentangling interactions in the microbiome: a network perspective[J]. Trends in Microbiology, 2017, 25(3): 217-228.
    [23] STEINBERG S, GRINBERG M, BEITELMAN M, PEIXOTO J, OREVI T, KASHTAN N. Two-way microscale interactions between immigrant bacteria and plant leaf microbiota as revealed by live imaging[J]. The ISME Journal, 2021, 15(2): 409-420.
    [24] LI PD, ZHU ZR, ZHANG YZ, XU JP, WANG HK, WANG ZY, LI HY. The phyllosphere microbiome shifts toward combating melanose pathogen[J]. Microbiome, 2022, 10(1): 56.
    [25] 马巧丽, 杜欢, 刘杨, 李猛. 红树林湿地硫酸盐还原菌的多样性及其参与驱动的元素耦合机制[J]. 微生物学报, 2022, 62(12): 4606-4627. MA QL, DU H, LIU Y, LI M. Sulfate-reducing prokaryotes in mangrove wetlands: diversity and role in driving element coupling[J]. Acta Microbiologica Sinica, 2022, 62(12): 4606-4627(in Chinese).
    [26] 潘晴. 硫化氢对大豆共生根瘤衰老的作用研究[D]. 杨凌: 西北农林科技大学硕士学位论文, 2019. PAN Q. The function of hydrogen sulfide in soybean nodule senescence[D]. Yangling: Master’s Thesis of Northwest A&F University, 2019(in Chinese).
    [27] SRIVASTAVA AK, DAS AK, JAGANNADHAM PTK, BORA P, ANSARI FA, BHATE R. Bioprospecting microbiome for soil and plant health management amidst huanglongbing threat in Citrus: a review[J]. Frontiers in Plant Science, 2022, 13: 858842.
    [28] FAUST K, RAES J. Microbial interactions: from networks to models[J]. Nature Reviews Microbiology, 2012, 10: 538-550.
    [29] 张健. 接种费氏中华根瘤菌WGF03及其硫代谢突变体对大豆生长和根际细菌群落的影响[D]. 南宁: 广西大学硕士学位论文, 2014. ZHANG J. Effects of Sinorhizobium fredii WGE03 and its sulfur metabolic mutants inoculation on soybean growth and rhizosphere bacterial communities[D]. Nanning: Master’s Thesis of Guangxi University, 2014(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程华平,索冰玉,王冯姝雅,涂龙群,陈娟. 硫化氢对水分逆境胁迫下大豆叶际和根内微生物群落结构的影响[J]. 微生物学报, 2024, 64(11): 4171-4189

复制
分享
文章指标
  • 点击次数:182
  • 下载次数: 260
  • HTML阅读次数: 273
  • 引用次数: 0
历史
  • 收稿日期:2024-04-09
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-11-04
文章二维码