噪音环境对黄土边坡微生物群落的影响
作者:
基金项目:

甘肃省重点研发计划(22YF7FA172)


Noise affects microbial communities on loess slopes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [52]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】 探讨不同噪音下黄土边坡土壤微生物在温度和时间影响下的变化。【方法】 通过测定土壤磷酸盐含量变化,确定噪音分贝在70、90、110 dB,温度在-5、15、35 ℃,噪音时间在2、4、6 h的条件下,土壤微生物群落的变化。随后对土壤微生物进行宏基因组学测序。【结果】 门水平上,放线菌门(Actinobacteria)、毛霉菌门(Mucoromycota)、热变形菌门(Thermoproteota)和黏球菌门(Myxococcota)组间存在显著差异(P<0.05)。属水平上,节杆菌属(Arthrobacter)、根孢囊霉属(Rhizophagus)、假节杆菌属(Pseudarthrobacter)、马杜拉放线菌属(Actinomadura)、考克氏菌属(Kocuria)、红色杆形菌属(Rubrobacter)和棒杆菌属(Corynebacterium)组间存在显著差异(P<0.05);种水平上,Rhizophagus irregularisActinomadura sp. WMMB 499、热带红色杆形菌(Rubrobacter tropicus)、Arthrobacter sp. PGP41、Arthrobacter sp. 24S4 2和Arthrobacter crystallopoietes组间存在显著差异(P<0.05)。【结论】 不同噪音环境对门、属、种分类水平下的土壤微生物均具有显著影响。

    Abstract:

    [Objective] To investigate the changes of microbial communities on loess slopes with different noise conditions under the influences of temperature and time. [Methods] Based on the changes in soil phosphate content, the noise was determined at 70, 90, and 110 dB. The microbial communities presented variations along the temperature gradients of -5, 15, and 35 °C and the noise duration of 2, 4, and 6 h. Subsequently, metagenomic sequencing was carried out for the soil microbial communities. [Results] At the phylum level, Actinobacteria, Mucoromycota, Thermoproteota, and Myxococcota showed differences in the relative abundance among groups (P<0.05). At the genus level, Arthrobacter, Rhizophagus, Pseudarthrobacter, Actinomadura, Kocuria, Rubrobacter, and Corynebacterium demonstrated different relative abundance among groups (P<0.05). At the species level, there were significant differences in the relative abundance of Rhizophagus irregularis, Actinomadura sp. WMMB 499, Rubrobacter tropicus, Arthrobacter sp. PGP41, Arthrobacter sp. 24S4 2, and Arthrobacter crystallopoietes among groups (P<0.05). [Conclusion] Different noise environments have significant effects on the relative abundance of soil microorganisms at the phylum, genus, and species levels.

    参考文献
    [1] 贾路, 于坤霞, 徐国策, 任宗萍, 高海东, 李占斌, 李鹏. 基于耦合协调度的黄土高原地区NDVI与降水关系的变异诊断[J]. 生态学报, 2021, 41(18): 7357-7366. JIA L, YU KX, XU GC, REN ZP, GAO HD, LI ZB, LI P. Diagnosis of the relationship between NDVI and precipitation based on the coupling coordination degree[J]. Acta Ecologica Sinica, 2021, 41(18): 7357-7366(in Chinese).
    [2] 牛娟. 黄土高原地区新型城镇化与资源环境协调发展研究[D]. 临汾: 山西师范大学硕士学位论文, 2019. NIU J. Study on the coordinated development of new urbanization and resources and environment in Loess Plateau[D]. Linfen: Master’s Thesis of Shanxi Normal University, 2019(in Chinese).
    [3] 逄梦璇, 刘红文, 韩旭, 张梦亭, 刘萍, 高燕, 张淼, 张士秀, 梁爱珍. 典型黑土带玉米农田土壤微生物群落地理分布及驱动因素[J]. 土壤与作物, 2024, 13(1): 1-12. PANG MX, LIU HW, HAN X, ZHANG MT, LIU P, GAO Y, ZHANG M, ZHANG SX, LIANG AZ. Geographical distribution of soil microbial community and driving factors in corn farmland of typical black soil belt[J]. Soils and Crops, 2024, 13(1): 1-12(in Chinese).
    [4] ZENG QC, DONG YH, AN SS. Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau, China[J]. PLoS One, 2016, 11(4): e0152894.
    [5] WANG J, FU BJ, LU N, ZHANG L. Seasonal variation in water uptake patterns of three plant species based on stable isotopes in the semi-arid Loess Plateau[J]. Science of the Total Environment, 2017, 609: 27-37.
    [6] GUO YQ, CHEN XT, WU YY, ZHANG L, CHENG JM, WEI GH, LIN YB. Natural revegetation of a semiarid habitat alters taxonomic and functional diversity of soil microbial communities[J]. Science of the Total Environment, 2018, 635: 598-606.
    [7] ZHANG RH, RONG L, ZHANG LL. Soil nutrient variability mediates the effects of erosion on soil microbial communities: results from a modified topsoil removal method in an agricultural field in Yunnan plateau, China[J]. Environmental Science and Pollution Research International, 2022, 29(3): 3659-3671.
    [8] 梁香寒, 张克斌, 乔厦. 半干旱黄土区柠条林土壤水分和养分与群落多样性关系[J]. 生态环境学报, 2019, 28(9): 1748-1756. LIANG XH, ZHANG KB, QIAO X. Relationship between soil moisture and nutrients and plant diversity of Caragana microphylla community in semi-arid loess region[J]. Ecology and Environmental Sciences, 2019, 28(9): 1748-1756(in Chinese).
    [9] 乔羽. 放牧对黄土丘陵区退耕地生物结皮分布格局及物种多样性的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2022. QIAO Y. Effects of grazing on distribution pattern and species diversity of biological crusts in abandoned farmland in Loess Hilly Region[D]. Yangling: Master’s Thesis of Northwest A&F University, 2022(in Chinese).
    [10] 张琦, 王淑兰, 王浩, 刘朋召, 王旭敏, 张元红, 李昊昱, 王瑞, 王小利, 李军. 深松与免耕频次对黄土旱塬春玉米田土壤团聚体与土壤碳库的影响[J]. 中国农业科学, 2020, 53(14): 2840-2851. ZHANG Q, WANG SL, WANG H, LIU PZ, WANG XM, ZHANG YH, LI HY, WANG R, WANG XL, LI J. Effects of subsoiling and No-tillage frequencies on soil aggregates and carbon pools in the Loess Plateau[J]. Scientia Agricultura Sinica, 2020, 53(14): 2840-2851(in Chinese).
    [11] 郑邦玉. 精准滴灌对渭北旱地苹果产量品质、水分利用及果园土壤养分的影响[D]. 杨凌: 西北农林科技大学硕士学位论文, 2023. ZHENG BY. Effects of precision drip irrigation on apple yield, quality, water use and orchard soil nutrients in Weibei dryland[D]. Yangling: Master’s Thesis of Northwest A&F University, 2023(in Chinese).
    [12] 高跃, 刘春华, 姜泽建, 郑跃平, 徐嘉楠, 范厚勇, 王有基, 胡梦红. 水下噪音对杂交鲟行为及肠道微生物的影响[J]. 水生生物学报, 2023, 47(6): 931-939. GAO Y, LIU CH, JIANG ZJ, ZHENG YP, XU JN, FAN HY, WANG YJ, HU MH. underwater noise on the behavior and gut microbial composition of hybrid sturgeon[J]. Acta Hydrobiologica Sinica, 2023, 47(6): 931-939(in Chinese).
    [13] 丁素素. 音乐刺激对断奶仔猪积极情绪的行为响应和肠道健康的影响[D]. 哈尔滨: 东北农业大学硕士学位论文, 2023. DING SS. Effects of music stimulation on positive emotional behavioral response and intestinal health of weaned piglets[D]. Harbin: Master’s Thesis of Northeast Agricultural University, 2023(in Chinese).
    [14] 马迪. 不同乐器演奏的乐曲对犊牛生长性能、血液生化指标、行为及粪便菌群的影响[D]. 洛阳: 河南科技大学硕士学位论文, 2022. MA D. Effects of music played by different musical instruments on growth performance, blood biochemical indexes, behavior and fecal flora of calves[D]. Luoyang: Master’s Thesis of Henan University of Science and Technology, 2022(in Chinese).
    [15] ZHANG ZY, WU YQ, ZHOU SZ, FU PC, YAN H. Effects of music and white noise exposure on the gut microbiota, oxidative stress, and immune-related gene expression of mice[J]. Microorganisms, 2023, 11(9): 2272.
    [16] CUI B, GAI ZH, SHE XJ, WANG R, ZHUGE X. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats[J]. Scientific Reports, 2016, 6: 36693.
    [17] 陶俊先. 噪音对小鼠情绪相关行为和肠道菌群结构改变的研究[D]. 泉州: 华侨大学硕士学位论文, 2023. TAO JX. Effects of noise on emotion-related behavior and intestinal flora structure in mice[D]. Quanzhou: Master’s Thesis of Huaqiao University, 2023(in Chinese).
    [18] 李怡佳, 马俊伟, 李玉倩, 沈心怡, 夏星辉. 土壤微生物群落对全球气候变化响应的研究进展[J]. 微生物学通报, 2023, 50(4): 1700-1719. LI YJ, MA JW, LI YQ, SHEN XY, XIA XH. Responses of soil microbial community to global climate change: a review[J]. Microbiology China, 2023, 50(4): 1700-1719(in Chinese).
    [19] 高思齐, 宋艳宇, 宋长春, 马秀艳, 蒋磊. 增温和外源碳输入对泥炭地土壤碳氮循环关键微生物功能基因丰度的影响[J]. 生态学报, 2020, 40(13): 4617-4627. GAO SQ, SONG YY, SONG CC, MA XY, JIANG L. Effects of warming and exogenous carbon input on the abundance of key microbial functional genes of carbon-nitrogen cycle in peatland soil[J]. Acta Ecologica Sinica, 2020, 40(13): 4617-4627(in Chinese).
    [20] RATKOWSKY DA, OLLEY J, McMEEKIN TA, BALL A. Relationship between temperature and growth rate of bacterial cultures[J]. Journal of Bacteriology, 1982, 149(1): 1-5.
    [21] ZUCCARINI P, ASENSIO D, OGAYA R, SARDANS J, PEÑUELAS J. Effects of seasonal and decadal warming on soil enzymatic activity in a P-deficient Mediterranean shrubland[J]. Global Change Biology, 2020, 26(6): 3698-3714.
    [22] LIU Y, ZHANG H, XIONG MH, LI F, LI LQ, WANG GL, PAN GX. Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature[J]. Biology and Fertility of Soils, 2017, 53(1): 3-8.
    [23] RIZVI A, AHMED B, KHAN MS, UMAR S, LEE J. Psychrophilic bacterial phosphate-biofertilizers: a novel extremophile for sustainable crop production under cold environment[J]. Microorganisms, 2021, 9(12): 2451.
    [24] SUYAL DC, YADAV AN, EL ENSHASY HA, SONI R. Editorial: exploration of cold-adapted microorganisms for sustainable development[J]. Frontiers in Microbiology, 2023, 14: 1191673.
    [25] WANG XM, YAN BG, FAN B, SHI LT, LIU GC. Temperature and soil microorganisms interact to affect Dodonaea viscosa growth on mountainsides[J]. Plant Ecology, 2018, 219(7): 759-774.
    [26] 卢建男. 兰州地区湿陷性黄土边坡生态恢复技术研究[D]. 兰州: 兰州大学硕士学位论文, 2017. LU JN. Study on ecological restoration technology of collapsible loess slope in Lanzhou area[D]. Lanzhou: Master’s Thesis of Lanzhou University, 2017(in Chinese).
    [27] HUANG WL, HUANG WW, LI HF, LEI ZF, ZHANG ZY, TAY JH, LEE DJ. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge[J]. Bioresource Technology, 2015, 193: 549-552.
    [28] 程伟. 土壤有效磷含量对土壤微生物量及代谢活性的影响[D]. 长春: 吉林农业大学硕士学位论文, 2013. CHENG W. Effects of soil available phosphorus content on soil microbial biomass and metabolic activity[D]. Changchun: Master’s Thesis of Jilin Agricultural University, 2013(in Chinese).
    [29] 斯林林, 徐静, 曹凯, 张贤, 王建红. 绿肥种植对红壤旱地生土细菌群落结构的影响[J]. 浙江农业学报, 2023, 35(8): 1864-1875. SI LL, XU J, CAO K, ZHANG X, WANG JH. Response of bacterial community to planting cover crops in virgin upland red soil[J]. Acta Agriculturae Zhejiangensis, 2023, 35(8): 1864-1875(in Chinese).
    [30] 庞志强, 余迪求. 干旱胁迫下的植物根系-微生物互作体系及其应用[J]. 植物生理学报, 2020, 56(2): 109-126. PANG ZQ, YU DQ. Plant root system-microbial interaction system under drought stress and its application[J]. Plant Physiology Journal, 2020, 56(2): 109-126(in Chinese).
    [31] 阿瓦古丽·图尔荪, 张新强, 贠丰泽, 朱彦斌, 张磊, 杜文娟, 马正海. 乌鲁木齐市河马泉新区土壤微生物多样性及其影响因素分析[J]. 中国环境科学, 2023, 43(S1): 277-287. Tursun Awagul, ZHANG XQ, YUN FZ, ZHU YB, ZHANG L, DU WJ, MA ZH. Analysis of soil microbial diversity and influencing factors in Hemaquan New District in Urumqi[J]. China Environmental Science, 2023, 43(S1): 277-287(in Chinese).
    [32] YANG Y, LI T, WANG YQ, CHENG H, CHANG SX, LIANG C, AN SS. Negative effects of multiple global change factors on soil microbial diversity[J]. Soil Biology and Biochemistry, 2021, 156: 108229.
    [33] 吴霞, 蔡进军, 王长军, 李维倩, 陈刚, 白阳阳. 宁夏黄土丘陵区农田土壤细菌海拔分布特征[J]. 环境科学, 2024, 45(6): 3605-3613. WU X, CAI JJ, WANG CJ, LI WQ, CHEN G, BAI YY. Altitude distribution characteristics of farmland soil bacteria in Loess Hilly Region of Ningxia[J]. Environmental Science, 2024, 45(6): 3605-3613(in Chinese).
    [34] 张语馨, 孙约兵, 张仁甫, 王超, 贾宏涛. 汞污染对土壤有机碳稳定性和固碳功能微生物群落的影响[J]. 环境科学, 2024. https://doi.org/10.13227/j.hjkx.202401013. ZHANG YX, SUN YB, ZHANG RF, WANG C, JIA HT. Effects of mercury pllution on soil organic carbon stability and carbon-fixing microbial communities[J]. Environmental Science, 2024. https://doi.org/10.13227/j.hjkx.202401013(in Chinese).
    [35] BARNS SM, DELWICHE CF, PALMER JD, PACE NR. Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences[J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(17): 9188-9193.
    [36] MIYAZAKI U, SANARI M, TAME A, KITAJIMA M, OKAMOTO A, SAWAYAMA S, MIYAZAKI J, KEN TK, NAKAGAWA S. Pyrofollis japonicus gen. nov. sp. nov., a novel member of the family Pyrodictiaceae isolated from the Iheya North hydrothermal field[J]. Extremophiles, 2023, 27(3): 28.
    [37] KONG YL, KUZYAKOV Y, RUAN Y, ZHANG JW, WANG TT, WANG M, GUO SW, SHEN QR, LING N. DNA stable-isotope probing delineates carbon flows from rice residues into soil microbial communities depending on fertilization[J]. Applied and Environmental Microbiology, 2020, 86(7): e02151-19.
    [38] 刘闪, 曹星星, 吴攀, 廖路, 廖家豪. 酸性矿山废水影响下水库真菌群落特征与环境因子研究[J]. 环境科学与技术, 2021, 44(2): 1-8. LIU S, CAO XX, WU P, LIAO L, LIAO JH. Study on characteristics of reservoir fungal community and environmental factors under the influence of acid mine drainage[J]. Environmental Science & Technology, 2021, 44(2): 1-8(in Chinese).
    [39] 杜欣然, 王晶晶, 冉柒, 李越中. 黏细菌资源及其系统分类[J]. 微生物学通报, 2023, 50(7): 3104-3121. DU XR, WANG JJ, RAN Q, LI YZ. Resources and taxonomy of myxobacteria: a review[J]. Microbiology China, 2023, 50(7): 3104-3121(in Chinese).
    [40] GARCIA R, MUIIER R. The Prokaryotes[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014: 247-279.
    [41] THIERY S, KAIMER C. The predation strategy of Myxococcus xanthus[J]. Frontiers in Microbiology, 2020, 11: 2.
    [42] GUSHGARI-DOYLE S, LUI LM, NIELSEN TN, WU XQ, MALANA RG, HENDRICKSON AJ, CARION H, POOLE FL 2nd, ADAMS MWW, ARKIN AP, CHAKRABORTY R. Genotype to ecotype in niche environments: adaptation of Arthrobacter to carbon availability and environmental conditions[J]. ISME Communications, 2022, 2(1): 32.
    [43] GUNJAL A, BHAGAT DS. Diversity of actinomycetes in western ghats[M]//Microbial Diversity in Hotspots. Amsterdam: Elsevier, 2022: 117-133.
    [44] MITRA D, MONDAL R, KHOSHRU B, SENAPATI A, RADHA TK, MAHAKUR B, UNIYAL N, MYO EM, BOUTAJ H, SIERRA BEG, PANNEERSELVAM P, GANESHAMURTHY AN, ELKOVIĆ SA, VASIĆ T, RANI A, DUTTA S, DAS MOHAPATRA PK. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: advances in soil, plant, and microbial multifactorial interactions[J]. Pedosphere, 2022, 32(1): 149-170.
    [45] TSHISHONGA K, SEREPA-DLAMINI MH. Draft genome sequence of Pseudarthrobacter phenanthrenivorans strain MHSD1, a bacterial endophyte isolated from the medicinal plant Pellaea calomelanos[J]. Evolutionary Bioinformatics Online, 2020, 16: 1176934320913257.
    [46] ROIKO M, MAY M, RELICH RF. Characterization of Pontibacter altruii sp. nov., isolated from a human blood culture[J]. New Microbes and New Infections, 2017, 19: 71-77.
    [47] KOUŘILOVÁ X, SCHWARZEROVÁ J, PERNICOVÁ I, SEDLÁŘ K, MRÁZOVÁ K, KRZYŽÁNEK V, NEBESÁŘOVÁ J, OBRUČA S. The first insight into polyhydroxyalkanoates accumulation in multi-extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus[J]. Microorganisms, 2021, 9(5): 909.
    [48] 于萌, 张永帅, 付伟, 吴照祥, 谢伟, 张莘, 郝志鹏, 陈保冬. 保水剂和丛枝菌根真菌异形根孢囊霉对紫花苜蓿生长与抗旱性的影响[J]. 菌物学报, 2019, 38(11): 1976-1991. YU M, ZHANG YS, FU W, WU ZX, XIE W, ZHANG X, HAO ZP, CHEN BD. Effects of arbuscular mycorrhizal fungi Rhizophagus irregularis and super absorbent polymers on growth and drought tolerance of Medicago sativa[J]. Mycosystema, 2019, 38(11): 1976-1991(in Chinese).
    [49] 花顶, 徐洪文, 杨阳, 朱先灿. 低温胁迫下丛枝菌根对玉米根部渗透调节物质含量的影响[J]. 黑龙江畜牧兽医, 2016(9): 140-142. HUA D, XU HW, YANG Y, ZHU XC. Effect of arbuscular mycorrhizal fungi on the contents of osmoregulation substance of maize roots under low temperature stress[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(9): 140-142(in Chinese).
    [50] LIU YX, ZHANG YM, HUANG YD, NIU JJ, HUANG J, PENG XY, PENG F. Spatial and temporal conversion of nitrogen using Arthrobacter sp. 24S4-2, a strain obtained from Antarctica[J]. Frontiers in Microbiology, 2023, 14: 1040201.
    [51] XU XH, XU M, ZHAO QM, XIA Y, CHEN C, SHEN ZG. Complete genome sequence of Cd(II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation[J]. Current Microbiology, 2018, 75(9): 1231-1239.
    [52] 李娟, Constantine Uwaremwe, 冷艳, 张晓华, 李师翁, 陈熙明. 节杆菌属细菌处理有机物和重金属污染物的研究进展[J]. 环境科学与技术, 2017, 40(10): 89-97. LI J, UWAREMWE C, LENG Y, ZHANG XH, LI SW, CHEN XM. Progress on the study of biodegradation of organic pollutants and adsorption of heavy metals with Arthrobacter strains[J]. Environmental Science & Technology, 2017, 40(10): 89-97(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李明凯,赵丽萍,李学珍,杭鑫余,田丽娇,陈莉. 噪音环境对黄土边坡微生物群落的影响[J]. 微生物学报, 2024, 64(11): 4219-4233

复制
分享
文章指标
  • 点击次数:131
  • 下载次数: 226
  • HTML阅读次数: 159
  • 引用次数: 0
历史
  • 收稿日期:2024-04-27
  • 在线发布日期: 2024-10-30
  • 出版日期: 2024-11-04
文章二维码